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This paper studies two fundamental questions regarding probabilistic selling in vertically differentiated mar-
kets: When is it profitable and how does one design it optimally? For the first question, we identify an impor-
tant but overlooked economic mechanism driving probabilistic selling in vertically differentiated markets:
the convexity of consumer preferences. In stark contrast to the literature finding that probabilistic selling
is never profitable except in the presence of certain capacity constraint or consumer bounded rationality,
we find that with many alternative utility functions capable of representing convex preference, probabilistic
selling is always profitable. For the second question, we study the optimal strategy of probabilistic selling,
including the design and price of the probabilistic good and the prices of the component goods. We show
that under some technical conditions, the optimal price of the high-quality component good increases while
the optimal price of the low-quality component good decreases upon the introduction of probabilistic selling,
thereby increasing the market coverage and the economic efficiency without launching an actual new product
line. To further illustrate the design of probabilistic selling, we use an example based on the canonical utility
function, which is widely used in the economics literature on vertical product differentiation. We derive a
closed-form solution to the problem of optimal probabilistic selling. We also take advantage of the analytical
tractability of the canonical utility to further explore the design of multiple probabilistic goods.
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1. Introduction
A probabilistic good is a synthetic good consisting of a mix, often in the form of a lottery, between
existing goods (hereafter, component goods). The selling of probabilistic goods, a practice known as
probabilistic selling or opaque selling, is an innovative way of combining products or services that
are mostly homogeneous but differ in one important attribute, either horizontally or vertically.

Earlier works (Jiang 2007, Fay and Xie 2008, 2010, Jerath et al. 2010) on probabilistic selling
focus on horizontally differentiated component goods such as sweaters of different colors or flights
at different times of the day between the same pair of origin and destination cities. These studies
help explain the economic forces driving probabilistic selling in numerous horizontal markets. As
noted in another pioneering work on probabilistic selling (Zhang et al. 2015), “there are equally
numerous quality-differentiated markets where consumers strictly prefer one product over the other”
and “it is important to ask whether probabilistic selling will prove profitable in quality-differentiated
markets.” In fact, the practice of selling a synthetic product has been documented in the internet
broadband service industry, where high- and low-speed services are mixed as a probabilistic good
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(Zhang et al. 2015, Zheng et al. 2019); in the car rental industry, where cars of different sizes are
mixed (Zheng et al. 2019); in the airline industry, where seats of different classes1 are mixed (Zhang
et al. 2015); in the hotel industry, where hotels2 of different star ratings are mixed; in the online
retailing industry, where earphones of different qualities are mixed (Zheng et al. 2019). Given the
practices of probabilistic selling in such markets, Zhang et al. (2015) argue probabilistic selling is a
profitable way for the disposal of the excess capacity of the high-quality goods. Alternatively, Huang
and Yu (2014) and Zheng et al. (2019) suggest bounded rationality, whether because of anecdotal
reasoning or overweighting of salient attributes by consumers’ salient thinking, may also lead to the
emergence of probabilistic selling in vertically differentiated markets. The current paper contributes
to this new stream of work on probabilistic selling.

The first main contribution of this paper is the revelation of an important but overlooked economic
factor underlying the profitability of probabilistic selling in vertically differentiated markets: convexity
of consumer preferences. Unlike Huang and Yu (2014) and Zheng et al. (2019), consumers are fully
rational in our model. Different from Zhang et al. (2015) who assume that there is excess capacity for
the high-quality component goods but insufficient capacity for the low-quality component goods, we
do not impose a constraint on the capacity of either component good. The extant literature would
suggest that probabilistic selling cannot be profitable in our setting. However, we show that once we
move beyond linear utility function and consider preference convexity, probabilistic selling can be
profitable for many utility functions. We further identify a sufficient condition that guarantees the
profitability of probabilistic selling, based on our proposed concept of λ-concavity which is a joint
property of two distinct objects: consumer preference and consumer type distribution.

To understand the basic intuition underlying the importance of preference convexity, consider
a risk-neutral seller who evaluates the profitability of offering a probabilistic good by mixing two
component goods of different qualities before any price or capacity optimization. Because of the
opportunity cost, the seller is unwilling to sell the probabilistic good at a price below the average price
of the component goods weighted by the mixing probability. So, other than possibly risk lovers, why
would any rational consumer, instead of consuming one of the component goods, ever be interested in
consuming the probabilistic good at a price above the weighted average price? The reason, we believe,

1 For example, airlines often sell “upgradable” tickets which allows the ticket holder, with some positive probability,
to upgrade seat class. Such an “upgradability” can be implemented in different ways. For example, consumers may
pay a fare higher than the cost of a “non-upgradable” ticket for this privilege. For most airlines, basic economy
tickets, which are sold at the lowest price, are non-upgradable tickets. Customers may also join an elite membership
program for such a privilege, and membership can be obtained upon achieving enough reward points or through direct
purchase. In general, an upgrade is not guaranteed and the probability of upgrade may also differ among different
consumers. For instance, American Airlines (AA) offers AAdvantage elite program, which consists of four different
membership statuses. A higher status level increases the chance of being upgraded.
2 Such a program is often referred to as a roulette. A participant of the program pays a discounted price for a stay either
in a (relatively) high-end or a (relatively) low-end hotel that is not revealed to the participant before the booking. See,
for example, Delphina’s Prestige Roulette Formula (https://www.delphinahotels.co.uk/sardinia/roulette.html)
or H10’s Tenerife Roulette (https://www.h10hotels.com/en/tenerife-hotels/roulette-tenerife).
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is that the consumer dislikes extreme allocation of her budget between quality improvement of the
focal good and the consumption of other goods. This important property of consumer preference,
formalized in economics as the crucial concept of preference convexity, is not an uncommon technical
property. Rather, it is a central premise capturing the fundamental principle of diminishing marginal
rates of substitution.

The extant literature all focus on the linear utility function which cannot represent a (strictly)
convex preference. We believe this largely contributes to the negative findings3 in the literature. For
example, Zhang et al. (2015) find probabilistic selling is never optimal without excess capacity of the
high-quality component goods, whereas Huang and Yu (2014) and Zheng et al. (2019) find proba-
bilistic selling is never optimal unless they introduce some form of bounded rationality. The linear
utility function, popular in the literature, and was originally suggested as a linear approximation to
more realistic utility functions for analytical tractability. However, once we stop using linear approx-
imation, these negative findings start to disappear. For example, if consumers have Cobb-Douglas
utility functions and their types are uniformly distributed, probabilistic selling is always profitable.
Hence, this paper complements the extant literature theoretically by revealing the crucial role of
preference convexity in probabilistic selling in vertically differentiated markets.

Two practical implications of this theoretical finding are immediate. First, because preference
convexity is well accepted in economics and is commonly assumed for consumer theory in standard
microeconomics textbooks (Varian 1992, Mas-colell et al. 1995, Jehle and Reny 2011, Kreps 1992,
2013, Pindyck and Rubinfeld 2018), our finding suggests probabilistic selling can be more widely
utilized by firms that offer quality-differentiated products. Hence, probabilistic selling can potentially
be profitable in contexts currently overlooked in academia and by practitioners. Second, we believe
the proposed economic mechanism complements the current explanations of probabilistic selling in
vertically differentiated markets, especially the one based on the excess (insufficient) capacity of the
high-quality (low-quality) component goods.4 Indeed, the existence of such an asymmetric mismatch
between the supply of and the demand for quality-differentiated component goods is unclear. Excess
capacity, especially of high-quality component goods, is costly, and a profit-maximizing firm should
have a strong incentive to match its capacity with the demand, especially in the long run. Moreover,
Zheng et al. (2019) show that once we model consumer types as continuous instead of dichotomous
as in Zhang et al. (2015), probabilistic selling is never optimal even with excess (insufficient) capacity
of the high-quality (low-quality) component goods.

3 See Proposition 1 in Huang and Yu (2014), Lemma 1 in Zhang et al. (2015), and Proposition 1 in Zheng et al.
(2019).
4 The size of the variable transaction cost specifically linked to probabilistic good also plays an important role in
the explanation based on excess capacity. For example, Zhang et al. (2015) find that only with a sufficiently large
transaction cost can the offering of both component goods along with the probabilistic good become optimal. However,
in reality, we do observe the offering of probabilistic goods and both component goods even when such a variable
transaction cost is negligible, at least compared with the prices of component goods.
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To aid the application of probabilistic selling in vertically differentiated markets, we develop a
theory of optimal probabilistic selling, which is the second main contribution of the paper. First,
we study the implications of probabilistic selling on the optimal prices of the component goods
without using any specific functional form of the utility. We prove under some regularity conditions
that the optimal price of the high-quality component good increases while the optimal price of
the low-quality component good decreases, as the result of optimal probabilistic selling. Therefore,
the practice of probabilistic selling can increase the market coverage and the economic efficiency
without launching an actual new product line. This insight is useful both to practitioners and future
researchers whose choice of utility function will inevitably vary depending on market characteristics.
Second, we illustrate the optimal design of probabilistic selling using the canonical utility function
that is often adopted in the economics literature to study vertical market differentiation. The explicit
and simple form of the utility function allows us to derive a closed-form solution to the problem of
optimal probabilistic selling. Third, we explore the optimal design of probabilistic selling when the
seller can offer multiple levels of probabilistic goods, which the extant literature has called for but
not yet studied.

The rest of the paper is organized as follows. In Section 2, we briefly review previous studies on
probabilistic selling in order to position the current paper in the literature. In Section 3, we set up
the model with a generic two-attribute utility function to reveal the importance of preference con-
vexity and the sufficiency of λ-concavity for probabilistic selling to be profitable without introducing
bounded rationality. In Section 4, we develop a theory of optimal probabilistic selling and illustrate
the optimal design in details with a fully-solved example. Finally, we conclude the paper in Section
5 with a discussion of its contributions, managerial implications, and limitations.

2. Literature Review
This literature can be broadly categorized based on two important modeling choices: whether the
component goods are horizontally differentiated or vertically differentiated, and whether the model
assumes rational consumers or consumers with bounded rationality. Accordingly, we list in Table
1 some representative works in each category and review those most closely related to the current
paper. For a more comprehensive review of the literature on probabilistic selling, we refer interested
readers to Jerath et al. (2009) or Zhang et al. (2015).

Naturally, most of the academic literature on probabilistic selling concerns two fundamental ques-
tions regarding the phenomenon: Under what conditions can probabilistic selling be profitable, and
how does one optimally design probabilistic goods? Jiang (2007) and Fay and Xie (2008) are among
the earliest works on probabilistic selling, and they focus on the case in which the two component
goods are horizontally differentiated. For example, Jiang (2007) considers a Hotelling model with two
component goods (e.g., morning flights and afternoon flights for the same origin-destination pair)
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Horizontally Differentiated Vertically Differentiated
Rational Jiang (2007), Fay and Xie (2008,

2010), Jerath et al. (2010, 2009),
Shapiro and Shi (2008)

Zhang et al. (2015)(with excess capac-
ity), current paper (without excess
capacity)

BoundedRationality Huang and Yu (2014) Huang and Yu (2014), Zheng et al.
(2019)

Table 1 Literature position of the current paper

placed at the two ends of the Hotelling line. The paper shows that probabilistic selling, with equal
probability of selecting the two component goods, can sometimes improve profit by essentially price
discriminating against consumers with less flexibility in terms of the choice between the two com-
ponent goods. Fay and Xie (2008) also adopt the Hotelling framework. They find that probabilistic
selling strictly improves profit if the marginal cost of the (symmetric) component goods is sufficiently
low. They also find the optimal mixing probability of the component goods to be exactly 0.5, thereby
providing a justification for the equal-probability assumption in Jiang (2007). In addition, Fay and
Xie (2008) also reveal that demand uncertainty and mismatch between capacity and demand can also
motivate the use of probabilistic selling. Our paper differs from these papers mainly in our focus on
vertically differentiated component goods rather than horizontally differentiated component goods.

More recently, researchers started to investigate the emergence of probabilistic selling in vertically
differentiated markets. Huang and Yu (2014) first show probabilistic selling is never optimal when
homogeneous consumers have rational expectations. However, if consumers have bounded rationality
as is captured by anecdotal reasoning, probabilistic selling can be optimal. Similarly, Zheng et al.
(2019) study probabilistic selling by taking into account consumers’ salient thinking behavior. They
show probabilistic selling is never profitable with rational consumers but does improve the seller’s
profit with salient thinkers. Different from these behavioral economics models, Zhang et al. (2015)
study probabilistic selling in vertically differentiated markets with rational consumers, which is also
assumed in the current paper. They find probabilistic selling can be profitable only if the capacity of
the high-quality (low-quality) component good exceeds (falls below) the market demand. In contrast
to findings from these studies, our paper suggests probabilistic selling can be profitable in more general
situations with neither bounded rationality nor asymmetric capacity constraint. Such a different
finding is rooted in the fact that in the extant literature (Huang and Yu 2014, Zhang et al. 2015,
Zheng et al. 2019), consumer preference is modeled by a utility function that does not satisfy the
property of strict convexity, which is an important factor for probabilistic selling to be profitable in
vertically differentiated markets.

In a sense, our paper bridges the gap between the literature on probabilistic selling in horizontally
differentiated markets and the literature on probabilistic selling in vertically differentiated markets.
The extant literature poses a puzzle regarding the applicability of probabilistic selling in these two
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market settings. For horizontally differentiated markets, probabilistic selling seems to be well justified
in a wide variety of markets, but for vertically differentiated markets, probabilistic selling seems to
only work in special circumstances (e.g., bounded rationality, salient thinking, excess (insufficient)
capacity of high-quality (low-quality) component goods). An important insight from our paper is that
such an asymmetry between horizontally differentiated markets and vertically differentiated markets
is largely artificial, driven by the restrictive model of consumer preference selected in the extant
literature to study vertically differentiated markets.

3. Profitability of Probabilistic Selling
We consider a focal good that is an indivisible good with its quality denoted by q. Each consumer
has a unit demand for the focal good. Before introducing a probabilistic good, the focal good has
two quality levels, qH and qL, offered at prices pH and pL, respectively. Without loss of generality,
we assume qH > qL > q0 and pH > pL, where a quality level of q0 > 0 simply means no consumption
of the focal good. The unit cost of the high- and low-quality goods are cH and cL, respectively.

We model consumer preference using a generic two-attribute utility function, U(x, y), that rep-
resents a consumer’s preference over the consumption of Hicks’ composite good (x), whose price is
normalized to 1, and the focal good (y). For the Hicks’ composite good, the consumer chooses the
quantity (x) to consume, whereas for the focal good, the consumer chooses to either consume at one
of the two quality levels or not to consume at all. For example, for a consumer planning on a vacation,
y may refer to the hotel quality (e.g., star rating, room type) or flight quality (e.g., economy class,
business class), and x may refer to the remaining budget for all other goods and services during the
vacation.

Consumers are heterogeneous in their budget level w, which has a distribution that is absolutely
continuous with its support normalized to [0,1]. Let F : [0,1]→ [0,1] be the cumulative distribution
function (CDF) of w. The consumer’s choice problem is the following, where p(y), the price of the
focal good, is either pH or pL if the consumer purchases, or 0 otherwise:

max
x≥0,y∈{q0,qH ,qL}

U(x, y), s.t. x+ p(y)≤w.

Clearly, the consumer chooses to spend the budget to maximize her utility, resulting in the utility of
• U(w− pH , qH) if the consumer purchases the high-quality focal good,
• U(w− pL, qL) if the consumer purchases the low-quality focal good, or
• U(w,q0) if the consumer does not purchase the focal good.

In the absence of a probabilistic good, the consumer maximizes her utility by comparing the above
three utility levels.

We assume the utility function is strictly increasing in each attribute, and impose the following
regularity conditions on its structure:
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1. ∂2U/∂x∂y > 0

2. ∂2U/∂x2 ≤ 0

3. ∂2U/∂y2 ≤ 0.
The first regularity condition, known as the single-crossing condition or the Spence Mirrlees property
(Milgrom and Shannon 1994), is often assumed in the literature5. Depending on its interpretation
as ∂2U/∂x∂y or ∂2U/∂y∂x which are mathematically equivalent for a C2 function, there are two
perspectives to its intuition. We may think of it as a modeling technique to guarantee that two utility
curves as functions of consumer budget or consumer type (i.e., w 7→ U(w− p(y), y)) corresponding
to the consumption of two goods of different quality levels only cross each other once, thereby
naturally generating the kind of market segmentation often observed in business. This is graphically
illustrated in Figure 1 where any pair of the three curves (i.e., w 7→ U(w,q0), w 7→ U(w− pH , qH),
w 7→ U(w − pH , qH)) only crosses each other once. Alternatively, we may think of this regularity
condition as a stylized way to capture the observation that consumers who consume more in general
(because of a larger budget) are typically more willing to pay for quality improvement (i.e., with a
larger ∂U/∂y). The second and third conditions capture the basic economic principle of diminishing
marginal utility.

Let w0 be the budget level at which a consumer is indifferent6 between the high- and low-quality
component goods, i.e. U(w0−pH , qH) =U(w0−pL, qL). Clearly, w0 is an implicit function of pH and
pL. An immediate consequence7 of the regularity conditions is that consumers with w <w0 strictly
prefer the low-quality good to the high-quality good, and consumers with w>w0 strictly prefer the
high-quality good to the low-quality good. Similarly, let w be the budget level at which a consumer
is indifferent between buying the low-quality component good and not buying at all, i.e., U(w,q0) =

U(w− pL, qL). Before the introduction of probabilistic selling, the market is partitioned into three
segments, which is illustrated in the example of Figure 1. In this example, because qH > qL > q0,
by Assumption 1, the slope of the curve w 7→ U(w − pL, qL) is larger than the slope of the curve
w 7→U(w,q0). Similarly, the slope of the curve w 7→U(w−pH , qH) is larger than the slope of the curve
w 7→ U(w − pL, qL). With the budget interval large enough, the three curves intersect, generating
three segments: [0,w], (w,w0], and (w0,1]. Consumers with w ∈ [0,w] choose not to purchase the

5 For example, Shaked and Sutton (1987) assume the condition to study vertical product differentiation and industrial
structure. Similarly, Zhang et al. (2015) assume it, albeit in a discrete setting. More specifically, in their context of
two types of consumers, this regularity condition becomes VHH −VHL >VLH −VLL, where Vij is the value of product
type j to consumers of type i, where i, j ∈ {H,L}.
6 The existence of w0 is guaranteed as long as the budget interval is sufficiently large, which we assume throughout
the paper. Otherwise, consumers either all prefer the high-quality good or all prefer the low-quality good, thereby
excluding the very existence of a vertically differentiated market in the first place. Similar conditions have been
imposed in the literature of vertical differentiation (Tirole 1988, Mussa and Rosen 1978) to ensure positive demand
for products of different qualities.
7 To see this, note U(w−pH , qH)−U(w−pL, qL) =

(
U(w−pH , qH)−U(w−pH , qL)

)
−
(
U(w−pL, qL)−U(w−pH , qL)

)
is monotone increasing in w because the term in the first parentheses is increasing due to the first regularity condition,
whereas the term in the second parentheses is decreasing due to the second regularity condition.
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focal good (i.e., consuming quality level q0); consumers with w ∈ (w,w0] choose to purchase the
low-quality focal good (i.e., consuming quality level qL) ; and consumers with w ∈ (w0,1] choose to
purchase the high-quality focal good (i.e., consuming quality level qH).

Figure 1 An illustration of market segmentation based on consumer heterogeneity in their budget level w.

We represent a probabilistic good by the pair (p,λ) where p is the price of the probabilistic
good and λ ∈ (0,1) is the mixing probability—the probability of receiving the high-quality good.
The expected utility from purchasing this probabilistic good for a consumer with budget level w
is λU(w − p, qH) + (1 − λ)U(w − p, qL). Let wH (wL) be the budget level8 at which a consumer
is indifferent between the probabilistic good and the high-quality (low-quality) component good,
respectively, i.e.,

U(wH − pH , qH) = λU(wH − p, qH)+ (1−λ)U(wH − p, qL) (1)

U(wL − pL, qL) = λU(wL − p, qH)+ (1−λ)U(wL − p, qL). (2)

In Figure 1, the expected utility from purchasing the probabilistic good is depicted as the curve
w 7→ λU(w− p, qH) + (1− λ)U(w− p, qL) which intersects with the curve w 7→ U(w− pL, qL) at wL

and with the curve w 7→U(w− pH , qH) at wH .
With the introduction of a probabilistic good, consumers essentially have an intermediate quality

level to choose and some may find it the best choice if the price of the probabilistic good is not
too high. This is the case in the illustration of Figure 1 where the curve w 7→ λU(w− p, qH) + (1−

8 Similar to the logic for the existence of w0, the existence of wH and wL is guaranteed as long as the support of the
budget distribution is large enough which we assume throughout the paper.
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λ)U(w−p, qL) is depicted as above the other curves in the region [wL,wH ]. In other words, consumers
with budget levels w ∈ [wL,wH ] prefer the probabilistic good to the component goods. This region
[wL,wH ] represent the market segment cannibalized by the introduction of probabilistic good, which
consists of some consumers who would have chosen the high-quality component good in the absence
of the probabilistic good (i.e., those with w ∈ [w0,wH ]), as well as some consumers who would have
chosen the low-quality component good in the absence of the probabilistic good (i.e., those with
w ∈ [wL,w0]). Therfore, the question of whether the demand for a probabilistic good is positive
translates graphically to the question of whether the curve w 7→ λU(w−p, qH)+ (1−λ)U(w−p, qL)

is above the other curves in some region. The following proposition characterizes the condition under
which the demand for the probabilistic good (p,λ) is positive.

Proposition 1 (Pivotal Consumer) The demand for probabilistic good (p,λ) is positive if and
only if p < p̄(λ) where p̄(λ) uniquely solves the following equation of p:

λU(w0 − p, qH)+ (1−λ)U(w0 − p, qL) =U(w0 − pH , qH) =U(w0 − pL, qL) (3)

Equivalently, the demand for the probabilistic good (p,λ) is positive if and only if a consumer with
budget level w0 strictly prefers the probabilistic good (p,λ) to either component good in which case
wL <w0 <wH . Moreover, p̄(λ)>λpH +(1−λ)pL.

The above result suggests that whether the demand for the probabilistic good is positive crucially
depends on how those consumers with budget level w0 (henceforth the pivotal consumers) rank the
probabilistic good.

3.1. The Importance of Preference Convexity
In this subsection, we demonstrate the importance of preference convexity for probabilistic selling
to be profitable and offer our explanation of the development of the current literature. Besides this
theoretical insight, an important practical implication is that the potential application of probabilistic
selling is beyond what the current literature has identified. First, recall the mathematical definition
of preference convexity.

Definition 1 A preference relation � on X is convex if for every x ∈ X , the upper contour set
{y ∈ X : y � x} is convex; that is, if y � x and z � x, then λy + (1− λ)z � x for any λ ∈ [0,1].
The preference relation � on X is strictly convex if for every x, y � x, z � x, and y 6= z, we have
λy+(1−λ)z � x for all λ∈ (0,1).

Zhang et al. (2015) explains the profitability of probabilistic selling in vertically differentiated
markets without introducing bounded rationality. The key factor there is the excess capacity of the
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high-quality component good and the insufficient capacity of the low-quality component goods. Such
a result is obtained by assuming two types of consumers. However, Zheng et al. (2019) pointed
out that with a continuous distribution of consumer types, probabilistic selling is never profitable
for any level of capacity constraint. This negative result indirectly demonstrates the importance of
modeling consumer preference as strictly convex because the result is obtained by assuming a linear
preference, and classical economic theory typically only considers rational preference that is either
strictly convex or weakly convex (i.e., linear). This indirect approach is analytically tractable thanks
to the simplicity of linear utility function.

One drawback of this indirect approach is that the intuition for the role of preference convexity in
probabilistic selling is obscured, which might have explained why the literature immediately examined
the possible role of bounded rationality in probabilistic selling. Our goal in this subsection is to
directly demonstrate the importance of preference convexity, using a generic utility function to model
consumer preference. Unlike the indirect approach, explicitly solving for and comparing the solutions
of two optimization problem involving a utility function that is not linear, hence abstract, is difficult, if
possible at all. To circumvent this difficulty, we instead consider a benchmark setting where the seller
offers the probabilistic good without expanding capacity and adjusting the prices of component goods.
Such a setting reflects a short-term scenario where the capacity is relatively fixed and the price of the
component goods are relatively stable. For practitioners, this is likely the first scenario to consider
while evaluating the profitability of probabilistic selling. Although highly stylized, this scenario can
clearly reveal the importance of preference convexity, as is illustrated in the next proposition.

Proposition 2 Without capacity expansion and price adjustment for component goods, probabilistic
selling is profitable only if consumer preference is strictly convex.

Intuitively, offering probabilistic goods gives consumers the option of an intermediate quality level
at an intermediate price. Such an option can only be attractive to consumers if they are averse to
“extreme” allocation of their budget between the focal good and the composite good, which is the
essence of strict convexity of preference.

To better illustrate the crucial role of preference convexity in the emergence of probabilistic goods,
we explain the underlying logic graphically in Figure 2 where the vertical axis represents the quality
of the focal good and the horizontal axis represents the remaining budget spent on the composite
good. Because consumer utility function is strictly increasing in both attributes, moving northeast
to an indifference curve will increase utility. The consumption portfolios from purchasing the high-
and low-quality goods correspond to point A and B, respectively. It’s easy to see that point H in
the figure, representing the portfolio (w0−p,λqH +(1−λ)qL) where p≡ λpH +(1−λ)pL is the price
lower bound from the proof of Proposition 2, must lie on the line segment AB. The probabilistic
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Figure 2 A graphical proof of Proposition 2 based on indifference curve analysis of the pivotal consumers.

good will only be offered at a price greater than p. Hence, the expectation of the probabilistic good
must lie on the line segment DH . Because ∂2U(x, y)/∂y2 ≤ 0, the certainty equivalent (CE) of the
probabilistic good must lie below DH . This certainty equivalent is represented by the segment9 CE

in the figure. By Proposition 1, the probabilistic good has positive demand if and only if it is strictly
preferred by the pivotal consumer. Because the pivotal consumer’s indifference curve connects A and
B, for her to strictly prefer a point on the segment CE to A (or B), the indifference curve must
bulge toward the origin. This roughly translates to strictly convex preference, because a preference
is strictly convex if the upper contour set {y ∈X : y� x} is strictly convex.

Considered “a formal expression of basic inclination of economic agent for diversification” (Mas-
colell et al. 1995), preference convexity is a central concept in economics, implying that the marginal
rate of substitution (MRS) diminishes along the indifference curve because we can expect that a
consumer will prefer to give up fewer and fewer units of a second good to get additional units of the
first one. A rational preference is (strictly) convex if and only if it can be represented by a (strictly)
quasiconcave10 utility function, which is related to but more general than (strictly) concave utility
functions. Strict convexity of consumer preference simply means the preference is convex and not
degenerate (i.e., linear). With convex preference, an agent prefers holding a mix of two extreme
portfolios to holding either of them. Therefore, our analysis suggests the profitability of probabilistic
selling is related to rational consumers’ desire for diversification: they don’t want to hold an extreme
portfolio of either definitely/always consuming low-quality goods or definitely/always paying a high
price.

9 CE is plotted as a parallel line segment, which is true for the Cobb-Douglas utility function. However, in general,
CE does not even need to be linear. For Cobb-Douglas Utility U(x, y) = xayb, where a, b < 1, we have λ(w0 −
p)aqbH +(1−λ)(w0 − p)aqbL = (w0 − p)aCEb, which implies CE = (λqbH +(1−λ)qbL)

1/b, which is a constant less than
λqH +(1−λ)qL.
10 A strictly quasiconcave utility is often defined as a function f : Rn → R, such that ∀x 6= y and λ ∈ (0,1) with
f(x)≥ f(y), f

(
λx+(1−λ)y

)
> f(y).
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The notion of preference convexity is well accepted in economics, and microeconomics textbooks
(Varian 1992, Mas-colell et al. 1995, Jehle and Reny 2011, Kreps 1992, 2013, Pindyck and Rubinfeld
2018) commonly assume it for the development of consumer theory. For example, Varian (1992)
argues (p. 157) that “if demand functions are well defined and everywhere continuous and are derived
from preference maximization, then the underlying preference must be strictly convex.” In other
words, in microeconomics theory, a well-behaved demand function requires that consumers have a
strict convex preference over a bundle of goods. Hence, preference convexity is also important in the
theory of general equilibrium. As Varian (1992) (p. 393) argues, “Usually, the assumption of strict
convexity has been used to assure that the demand function is well-defined – that there is only a
single bundle demanded at each price – and that the demand function is continuous – that small
changes in prices give rise to small changes in demand. The convexity assumption appears to be
necessary for the existence of an equilibrium allocation since it is easy to construct examples where
nonconvexities cause discontinuities of demand and thus nonexistence of equilibrium prices.”

The extant literature of probabilistic selling on vertically differentiated markets began by modeling
consumer preference using the utility function θq−p, where θ denotes consumer type, in order to show
probabilistic selling is never optimal unless one introduces behavioral factors in consumer’s choice
model (Huang and Yu 2014, Zheng et al. 2019) or certain capacity constraints (Zhang et al. 2015).
Unfortunately, this particular utility function cannot represent strictly convex preference, because its
indifference curve is linear. Popular in the literature largely due to its tractability, this utility function
is motivated in Tirole (1988) (p. 97) as an approximation of a more general utility function in order
to facilitate the study of product differentiation and pricing in vertically differentiated markets. To
see the nature of this approximation, note the utility function θq− p is equivalent11 to q− θp if θ is
interpreted as consumer type. Now consider a more general utility function U(w−p, q) = u(w−p)+q,
where u(·) is continuously differentiable. By the mean value theorem, U(w−p, q) = u(w)−pu′(ŵ)+q,
where w−p < ŵ <w. Because u(w) plays no role in the consumer’s choice problem, the above utility
is equivalent to q−u′(ŵ)p where u′(ŵ) is interpreted as consumer type θ. Importantly, note θ≡ u′(ŵ)

is actually a function of not just w, but also the price p. By modeling the utility function directly
as q − θp as if θ were only determined by the budget w, hence representing consumer type, one
ignores the dependency of θ on p which is often referred to as the income effect. The tractability
from ignoring the income effect often outweighs the resulting loss of generality. But for probabilistic
selling, this has a profound impact. The very nature of linear approximation of the consumer utility
function guarantees the violation of strict preference convexity, which, according to Proposition 2,
is an important factor driving the profitability of probabilistic selling in vertically differentiated

11 Indeed, we can simply redefine it by its reciprocal and note an affine transformation of a utility function does not
change the underlying preference.
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markets. Although the simplicity of the utility function q−θp is likely innocuous in most applications,
for probabilistic selling on vertically differentiated markets, it turns out to be consequential.

3.2. The Sufficiency of λ-Concavity
Now that we understand the importance of preference convexity to the profitability of probabilistic
selling, it is natural to identify some sufficient condition for the profitability of probabilistic selling,
which will complement the insight of the previous subsection. From now on, we allow the seller to
freely adjust its capacity and price of each component goods so as to maximize its profit in a long-
term equilibrium. To characterize the sufficient condition, we first define the concept of λ-concavity
which describes a pair (�,F ) where � is a rational preference and F is a probability distribution.

Definition 2 Fix (pH , pL, qH , qL). Let � be a two-attribute preference represented by the utility
function U(x, y) that satisfies the regularity conditions, and F be a cumulative distribution function.
The pair (�,F ) is called λ-concave for λ∈ (0,1), if

F (y)>λF (x)+ (1−λ)F (z). (4)

where x< y < z are unique solutions to the following equations:

U(x− pL, qL) = λU
(
x−λpH − (1−λ)pL, qH

)
+(1−λ)U

(
x−λpH − (1−λ)pL, qL

)
U(y− pH , qH) = U(y− pL, qL)

U(z− pH , qH) = λU
(
z−λpH − (1−λ)pL, qH

)
+(1−λ)U

(
z−λpH − (1−λ)pL, qL

)
.

For ease of exposition, we also say a preference (distribution) is λ-concave with a distribution (pref-
erence) if the pair is λ-concave. In our context, the triple (x, y, z) corresponds to (wL,w0,wH) for
the probabilistic selling strategy (λpH +(1−λ)pL, λ).

Let (p∗h, p∗l ) be the optimal prices of the component good without probabilistic selling. The following
result states a sufficient condition for probabilistic selling to be profitable.

Proposition 3 Probabilistic selling is profitable if the consumer preference and their budget distri-
bution are λ-concave for some λ ∈ (0,1) at (p∗h, p

∗
l ), in which case the probabilistic selling strategy

(p∗h, p
∗
l , λp

∗
h+(1−λ)p∗l , λ) generates more profit than the optimal strategy without probabilistic selling.

To understand the intuition without getting into the technical details, we summarize the proof
of Proposition 3 here. First, we can show that at the optimal prices (without probabilistic selling)
p∗h and p∗l , selling the probabilistic good (λp∗h + (1 − λ)p∗l , λ) yields higher profit margin in the
segment (wL,w0) but lower profit margin in the segment (w0,wH), compared with not selling the
probabilistic good. If the structure of consumer preference is λ-concave with the distribution of w,
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the ratio between the number of consumers in the segment (wL,w0) and the number of consumers
in the segment (w0,wH) is sufficiently high so that the overall profit gain from probabilistic selling
is positive. To appreciate the implication of Proposition 3, we consider two examples.

Example 1. Consider the linear utility function θq− p and interpret F as the distribution of θ.
It’s straightforward to verify that

y=
pH − pL
qH − qL

, x=
λpH +(1−λ)pL − pL

qH − qL
· 1
λ
= y, z =

pH −λpH − (1−λ)pL
qH − qL

· 1

1−λ
= y

Hence, x= y= z, which implies the linear utility function is not λ-concave with any distribution.
This example partially explains the negative finding in the extant literature that probabilistic

selling is generally not profitable if consumers have rational preferences. Our next example offers a
stark contrast to this literature finding by showing the general profitability of probabilistic selling
for the well-known family of Cobb-Douglas utility12 functions, which is frequently used by standard
microeconomics textbooks13 to illustrate the classical demand theory.

Example 2. The family of Cobb-Douglas utility functions and the uniform distribution are 1/2-
concave for any (pH , pL, qH , qL). Hence, the probabilistic selling strategy (p∗h, p

∗
l , (p

∗
h + p∗l )/2,1/2)

generates more profit than the optimal strategy without probabilistic selling, i.e., (p∗h, p∗l ).
The drastic difference between Example 1 and 2 illustrate the importance of modeling preference

beyond linearity when we study probabilistic selling in vertically differentiated markets. We conclude
this section with a positive finding that further demonstrates this point.

Corollary 1 Given any λ ∈ (0,1) and any strictly quasiconcave utility function satisfying the reg-
ularity conditions, there exists a distribution such that it is λ-concave with the preference. Such a
distribution can always be chosen as absolutely continuous.

The proof is straightforward once we rewrite (4) as

F (y)−F (x)

F (z)−F (y)
>

1−λ

λ
.

Indeed, given λ∈ (0,1), the unique solutions x, y, z are completely determined by the preference and
not affected by the distribution. Because x< y < z, we can always construct a distribution such that
the ratio between the probability mass in [x, y] and the probability mass in [y, z] is greater than
(1−λ)/λ.

12 A Cobb-Douglas utility function has the form of U(x, y) = x
1
α y

1
β with α,β ≥ 1. All Cobb-Douglas utility functions

are strictly quasiconcave. Indeed, recall quasiconcavity is preserved by an increasing transformation and any (strictly)
concave function is (strictly) quasiconcave. The mapping x 7→ ex is monotone increasing, and any function of the form
a lnx+ b lny with a, b > 0 is strictly concave because its Hessian matrix is clearly negative definite. By redefining q

1
β

as q in our problem, we can assume β = 1 without loss of generality. Hence, we parameterize a Cobb-Douglas utility
function as U(x, y) = x

1
α y in the paper.

13 See, for example, Varian (1992), Mas-colell et al. (1995), Jehle and Reny (2011), Kreps (1992, 2013), Pindyck and
Rubinfeld (2018).
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4. Design and Market Implication of Probabilistic Selling
In this section, we address our second research question: the optimal design and the market impli-
cation of probabilistic selling. Our objective in this section is twofold. First, because the choice of
consumer utility function depends on market contexts, and for many realistic utility functions, no
closed-form solution for the optimal probabilistic good (p,λ) exists, characterizing the implications
of probabilistic selling on the optimal prices of the component goods without actually solving for
the optimal (p,λ) will be valuable to future researchers and practitioners. Our second objective is
to illustrate the optimal probabilistic selling through an example for which we have a closed-form
solution. Denote c≡ cH − cL for ease of notation throughout this section.

4.1. General Model
The problem of optimal probabilistic selling can be framed as a two-stage decision problem where the
seller chooses the prices of the component goods during the first stage, and design the probabilistic
good (p,λ) in the second stage. We solve the optimal decision problem through backward induction.

Because we characterize the optimal probabilistic selling without assuming specific utility function,
in order to have some tractability, we follow the literature (Gabszewicz and Thisse 1979, Shaked and
Sutton 1982, 1983) by assuming uniform distribution of w. The optimal design of the probabilistic
good, given the prices of the two component goods, is the following optimization problem where the
objective function is the profit gain from the introduction of the probabilistic good:

max
p≤p̄, λ∈(0,1)

π(p,λ) =
(
p− (λcH +(1−λ)cL)

)
(wH −wL)

−(pH − cH)(wH −w0)− (pL − cL)(w0 −wL). (5)

Recall w0 is an implicit function of pH and pL defined by U(w0− pH , qH) =U(w0− pL, qL). Given
a pair (pH , pL), denote the optimal design of the probabilistic good by (p∗, λ∗) and the corresponding
optimal profit gain by π∗(pH , pL) to emphasize that it’s a function of pH and pL. We first characterize
the comparative statics of the optimal profit gain with respect to the prices of the component goods
in the following result.

Proposition 4 (Comparative Statics) For any price pair of the component goods (pH , pL),

∂π∗(pH , pL)

∂pH
+
∂π∗(pH , pL)

∂pL
= 0.

The above result suggests the optimal profit gain as a function of component-good prices is always
increasing in one while decreasing in the other and at the same rate, regardless of the prices of the
component goods. Note Proposition 4 is a local property and does not imply the monotonicity of
π∗(pH , pL), either in pH or in pL.
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Denote by π0 the profit without probabilistic selling, i.e., π0(pH , pL) = (pH − cH)
(
1−w0

)
+(pL −

cL)
(
w0−w

)
. The first-stage problem is the following pricing problem where the objective, Π(pH , pL),

defined as the sum of the profit without probabilistic selling and the profit gain from probabilistic

selling, represents the total profit given the price pair (pH , pL):

max
pH ,pL

Π(pH , pL)≡ π0(pH , pL)+π∗(pH , pL). (6)

Recall (p∗h, p∗l ) denotes the optimal price pair of the component goods without probabilistic selling,

i.e., (p∗h, p∗l ) = argmaxpH ,pL
π0(pH , pL). Let (p∗H , p

∗
L) be the optimal prices of the component goods

with probabilistic selling, i.e., (p∗H , p∗L) = argmaxpH ,pL
Π(pH , pL).

Of particular interest is the comparison between (p∗H , p
∗
L) and (p∗h, p

∗
l ). If the seller adopts proba-

bilistic selling to increase profit and do so optimally, will such a strategy improve economic efficiency?

To shed light on this important question, we need to understand whether the market coverage

increases as the result of probabilistic selling. More specifically, we need to compare p∗L with p∗l to

see whether the price of the low-quality component good would decrease. If p∗L < p∗l , some consumers

who previously could not afford the focal good can now afford it, hence are better off. Those con-

sumers who would purchase the low-quality component good in the absence of probabilistic selling

are also better off with the introduction of probabilistic selling. Indeed, if they continue to purchase

the low-quality component good, they are better off because they now purchase the same product

at a lower price. If they instead purchase the probabilistic good, they gain even more because they

prefer the probabilistic good to the low-quality component good, the purchase of which can already

give them higher utility levels than before.

To compare (p∗H , p
∗
L) with (p∗h, p

∗
l ) without actually solving them, we need the objective function to

be well-behaved globally. Otherwise, the optimal prices may not exist, and may not be unique even if

they exist. The simplest technical requirement is for the objective function to be strictly concave so

that we can use the first-order conditions to characterize (p∗H , p
∗
L). Our next result states a sufficient

condition for probabilistic selling to improve market efficiency.

Proposition 5 (Efficiency) If w is linear in pL and the following two conditions are satisfied,

∂wH

∂pH

(
2− ∂p∗

∂pH
+ c

∂λ∗

∂pH

)
>

1

2
+
(
p∗ − pH +(1−λ∗)c

) ∂∗

∂pH

(∂wH

∂pH

)
, ∀(pH , pL), (7)

(p− pL −λc)
∂wL

∂pL
>wL −w− (pL − cL)

∂w

∂pL
at (pH , pL) = (p∗h, p

∗
l ), (8)

the optimal price of the high-quality (low-quality) component good increases (decreases) upon the
introduction of probabilistic selling, with p∗H − p∗h ≥ p∗l − p∗L.
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Condition (7) is a sufficient condition for the profit function Π(pH , pL) to be strictly concave. Note
we introduced the notation ∂∗/∂pH to indicate that our evaluation of the partial derivative needs to
consider p∗ and/or λ∗ as implicit functions of pH . On the other hand, the usual notation ∂/∂pH is
what one usually expects for the evaluation of partial derivative. The notational distinction becomes
necessary for our analysis because we use the Envelope Theorem in the proof of Proposition 5.

Condition (8) is the necessary and sufficient condition for the optimal profit gain from probabilistic
selling to increase (decrease) in pH (pL) at (pH , pL) = (p∗h, p

∗
l ) which is the optimal pair of component-

good prices without probabilistic selling. In practice, we may verify condition (8) by first numerically
solving (p∗, λ∗) in the second-stage problem, given the current (optimal) prices of the component
goods, and then evaluating ∂wL/∂pL and wL at (p∗h, p

∗
l , p

∗, λ∗).
Given that the objective function is strictly concave, and thanks to some of its structural properties,

the optimal prices of the component goods with probabilistic selling can be obtained by increasing
the price of the high-quality component good and decreasing the price of the low-quality component
good. The linearity assumption of w as a function of pL is required for the application of a technical
result we developed to prove the proposition. For example, the assumption is satisfied if consumers
have a Cobb-Douglas utility function U(x, y) = x

1
α y in which case w(pL) = pL · qαL/(qαL − qα0 ).

4.2. Example: Canonical Utility Function
In this section, we illustrate the design of probabilistic selling using a particular utility function as
an example. This utility function, U(x, y) = xy, which we refer to as the canonical utility function,
was introduced in Gabszewicz and Thisse (1979). This canonical utility function is often used in the
economics literature to study vertical product differentiation (Gabszewicz and Thisse 1979, Shaked
and Sutton 1982, 1983, Sutton 1986, Gabszewicz et al. 1986, Shaked and Sutton 1987, Bolton and
Bonanno 1988, Fraja 1996). It is instrumental in the development of the theory of natural oligopolies
and natural monopoly in economics (Waterson 1987).

The canonical utility function is both rich enough to represent strictly convex preference, and
simple enough to allow for analytical tractability. The closed-form solution with this utility function
not only allows us to illustrate the optimal design of probabilistic selling, but also enables us to
explore the design of an arbitrary number of probabilistic goods, which is the first direction of future
research emphasized by Zhang et al. (2015) in their conclusion.

For the canonical utility function, we can solve for the following values based on their definitions
in Section 3, where γ ≡ qH/(qH − qL)> 1:

w0 = γpH +(1− γ)pL, wH =
pH
1−λ

γ− p

1−λ
(γ− 1+λ), wL =

p

λ
(γ− 1+λ)+

pL
λ
(1− γ).

We can also explicitly solve for p̄(λ) as the following:

p̄(λ) =
λγ

γ− 1+λ
pH +

(
1− λγ

γ− 1+λ

)
pL
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We first design the optimal probabilistic good given the prices of the two component goods. We
then use backward induction to explicitly solve for the optimal prices of the two component goods.
With the canonical utility function, we have w0 = λwL + (1− λ)wH which allows us to write the
optimization problem of (5) as the following:

max
p,λ

π(p,λ) =
(
p−λpH − (1−λ)pL

)
(wH −wL) (9)

s.t. 0<λ< 1, p < pH
λγ

γ− 1+λ
+ pL

(
1− λγ

γ− 1+λ

)
The following lemma provides a simple closed-form solution to this problem.

Lemma 1 Given the prices of the two component goods (pH , pL), the optimal design of the proba-
bilistic good and the corresponding optimal profit gain are given by

p∗ =
pH + pL

2
, λ∗ =

√
γ(γ− 1)− γ+1=

√
qL√

qH +
√
qL

π∗(pH , pL) =
(1
2
−λ∗

)2λ∗γ− γ+1−λ∗

2λ∗(1−λ∗)

(
pH − pL

)2
.

Different from the literature finding for horizontally differentiated markets (Fay and Xie 2008,
Huang and Yu 2014) that equal-probability mixing is optimal, Lemma 1 gives an example where the
optimal mixing probability is strictly below 0.5. Interestingly, the optimal price of the probabilistic
good is the arithmetic mean of the prices of the two component goods, whereas the optimal quality
of the probabilistic good is the geometric mean of the qualities of the component goods (i.e., λ∗qH +

(1−λ∗)qL =
√
qHqL).

Given the closed-form expression of (p∗, λ∗), we can verify that the technical conditions for Propo-
sition 5 are satisfied for the canonical utility function. Indeed, the condition of (8) holds because
π∗(pH , pL) is increasing (decreasing) in pH (pL) at any pair (pH , pL), not just at (p∗h, p

∗
l ). For the

condition of (7), note λ∗ is not a function of pH , hence, the condition becomes

γ

1−λ∗

(
2− 1

2
+ c · 0

)
>

1

2
+
(
p∗ − pH +(1−λ∗)c

) ∂∗

∂pH

( γ

1−λ∗

)
=

1

2
+0

which is true because γ > 1 and λ∗ < 1. Therefore, if consumers have the canonical utility function,
the price of the high-quality (low-quality) component good increases (decreases) after probabilistic
selling is introduced. In fact, we can explicitly solve for the optimal prices of component goods, i.e.,
the optimization problem of (6). We summarize the optimal prices and the market implication in
Proposition 6. Let τ ≡ qL

qL−q0
> 1.

Proposition 6 The optimal design of probabilistic selling is given by

p∗H =
κ+2τ − 1+

(
(2τ − 1)γ+κ

)
cH +

(
κ(τ − 1)− γ(2τ − 1)

)
cL

2τ(κ+1)− 1
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p∗L =
κ+(κ− γ+1)cH +

(
(τ − 1)(κ+1)+ γ

)
cL

2τ(κ+1)− 1

p∗ =
p∗H + p∗L

2
=

2κ+2τ − 1+
(
2κ+1+2γ(τ − 1)

)
cH +(τ − 1)(2κ− 2γ+1)cL

4τ(κ+1)− 2

λ∗ =

√
qL√

qH +
√
qL

where κ≡ 1
2
(
√
γ−

√
γ− 1)−2, and the relative increase of market coverage is

p∗l − p∗L
1− p∗l τ

τ =
2γ−κ− 1

2τ(κ+1)− 1
· 2τ − 1− (1− 2γτ)cH − (2γτ + τ − 1)cL

2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL
.

By viewing the probabilistic good as another “component” good, we can potentially design two

additional probabilistic goods, with one mixing the high-quality component good and the probabilistic

good, and the other mixing the low-quality component good and the probabilistic good. In fact, such

a construction process can be repeated, which leads to the general questions of whether and how

to design multiple probabilistic goods based on the two (original) component goods. To shed light

on this interesting question, we take advantage of the analytical tractability of the canonical utility

function to solve for the optimal menu of probabilistic goods.

Suppose the seller creates n probabilistic goods from the two component goods, H and L, with

different mixing probabilities and hence different prices. Indexing these probabilistic goods by i ∈

{1,2, ..., n}, we denote by λi the probability of receiving the high-quality component good when a

consumer purchases the i-th probabilistic good, at price pi. Without loss of generality, we assume

λ1 > · · ·> λn. For ease of notation, we also use i= 0 to index the high-quality component good H,

and use i= n+1 to index the low-quality component good L.

Denote the intersection of qi · (w− pi) with qi−1 · (w− pi−1) by wi−1,i — the budget level at which

a consumer is indifferent between buying the (i− 1)-th and the i-th probabilistic goods. We have

wi−1,i =
qi−1pi−1 − qipi
qi−1 − qi

=
(λi−1(qH − qL)+ qL)pi−1 − (λi(qH − qL)+ qL)pi

(λi−1 −λi)(qH − qL)
. (10)

With the result of Lemma 1, we can derive a series of explicit relations of the optimal mixing

probabilities as well as the optimal prices among all probabilistic goods. The key insight is that for

any probabilistic good to be optimal, it must be the optimal single probabilistic good when it is

considered as a probabilistic good constructed using its two neighboring goods in the sequence of

synthetic or component goods. For any i∈ {2, · · · , n−1}, we can directly apply Lemma 1 to write λi

in terms of λi−1 and λi+1, and similarly, to write pi in terms of pi−1 and pi+1. Define r= qL/qH ∈ (0,1).

The following lemma generalizes Lemma 1.
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Lemma 2 Given pH , pL, the optimal menu of n probabilistic goods consists of a sequence of proba-

bilistic goods {λi, pi}, where ∀i∈ {1, · · · , n},

p∗i =
n+1− i

n+1
pH +

i

n+1
pL, λ∗

i =
r

i
n+1 − r

1− r
. (11)

Let ∆p≡ pH − pL. The optimal profit gain from selling n probabilistic goods, denoted by π∗(n), is

π∗(n) =
pH∆p

1− r
−

∆p
n+1

(
∆p
n+1

+ pL

)
1− r

1
n+1

− n

n+1

(
∆p2

2
+pL∆p+∆p2

1
n+1

1− r
1

n+1

)
+pL∆p

( 1
n+1

r−
1

n+1 − 1
− r

1− r

)
.

The result above suggests the optimal sequence of probabilistic goods is characterized by an arith-

metic sequence of prices and a geometric sequence of qualities. That the price sequence forms an

arithmetic sequence is clear from (11), which is rooted in Lemma 1, where we showed the price of

the optimal single probabilistic good is the arithmetic mean of the prices of the component goods.

To see why the qualities of probabilistic goods form a geometric sequence, note

q∗i = λ∗
i qH +(1−λ∗

i )qL = qH ·
(
λ∗
i +(1−λ∗

i )r
)
= qH ·

(
λ∗
i (1− r)+ r

)
= qHr

i
n+1 ,

where the last equality follows from (11). This geometric sequence characterization is again rooted

in Lemma 1, where we showed the quality of the optimal single probabilistic good is the geometric

mean of the qualities of the two component goods.

Finally, we consider the optimal pricing of component goods when multiple probabilistic goods are

offered. The following proposition summarizes the result and includes Proposition 6 as a special case.

Proposition 7 (Optimal Menu Design of Probabilistic Selling) The optimal design of prob-

abilistic selling with n probabilistic goods is given by

p∗H =
1

ζ(1+ 1
2τ−1

)+n− 1
2τ−1

(
ζ − 1

2τ − 1
+n+1+ c

( n

1− r
+
ζ

2
− 1− rn

(1− r)2
r

1
n+1

)
+ cH

ζ − 1

2τ − 1

)
p∗L =

1+ cH +(τ − 1)cL
2τ − 1

− 1

(2τ − 1)
(
ζ(1+ 1

2τ−1
)+n− 1

2τ−1

)( ζ − 1

2τ − 1
+n+1+ c

( n

1− r
+
ζ

2
− 1− rn

(1− r)2
r

1
n+1

)
+ cH

ζ − 1

2τ − 1

))
λ∗
i =

r
i

n+1 − r

1− r

p∗i =
n+1− i

n+1
p∗H +

i

n+1
p∗L

where ζ ≡ 2

1−r
1

n+1
.
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It’s clear from the solution that p∗H and p∗L satisfy the simple relation of

p∗H +(2τ − 1)p∗L = 1+ cH +(τ − 1)cL.

As expected, in the special case of a single probabilistic good (i.e., n= 1), the expressions for p∗H and
p∗L reduce to their corresponding expressions in Proposition 6 by noting

ζ =
2

1−
√
r
= 1+

1+
√
r

1−
√
r
= 1+

1+
√

γ−1
γ

1−
√

γ−1
γ

= 1+

√
γ+

√
γ− 1

√
γ−

√
γ− 1

= 1+
1

(
√
γ−

√
γ− 1)2

= 1+2κ.

5. Conclusion
This paper studies two fundamental questions regarding probabilistic selling in vertically differenti-
ated markets: When is it profitable and how does one design it optimally? For the first question, we
identified convexity of consumer preference as an important factor and λ-concavity as a sufficient
condition for probabilistic selling to be profitable. This insight helps us explain why the extant litera-
ture finds probabilistic selling is never profitable unless one introduces certain capacity constraint or
bounded rationality. For the second question, we developed a theory of optimal probabilistic selling.

Our contributions to the literature are fourfold. First, we identified an important but overlooked
driver of the benefit of probabilistic selling, which is rooted in consumer preference. Hence, proba-
bilistic selling can be a profitable strategy in economic situations even in the absence of the factors
suggested by the extant literature (Huang and Yu 2014, Zhang et al. 2015, Zheng et al. 2019). Second,
we characterized some important structural properties of the optimal probabilistic selling strategy
that should apply to many settings. In particular, we find probabilistic selling can increase market
coverage and economic efficiency. Third, we initiated the study of designing multiple probabilistic
goods, which, given the exclusive focus on the design of single probabilistic good in the extant litera-
ture and the call for attention to this question by Zhang et al. (2015), is both theoretically interesting
and practically relevant. Although we characterized the optimal design of multiple probabilistic goods
based on a specific utility function that is often used in the economics literature on product vertical
differentiation, our approach to reduce the dimensionality of the optimization problem for the design
of multiple probabilistic goods should be applicable when other types of utility functions are con-
sidered. Fourth, the drastically different finding obtained from strictly convex consumer preference
suggests linear approximation is not always without consequence. Analytical research can sometimes
benefit from a robustness check with some alternative utility functions.

The paper also has important managerial implications for practitioners. First, because prefer-
ence convexity is a widely accepted notion in economics about consumer preference, we believe the
potential of probabilistic selling is beyond what has been discussed in the current literature. In the
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absence of the administrative cost of selling synthetic goods, probabilistic selling can be a generic
pricing strategy profitable for a variety of products. Through online selling or technological inno-
vation, the administrative cost of probabilistic selling can be made negligible in the future. Indeed,
some innovative company may design and offer a common platform for all sellers who are interested
in probabilistic selling, thereby driving down the administrative cost. Second, because the profit gain
from probabilistic selling should increase as the quality (or price) difference between two component
goods increases, probabilistic selling is particularly appealing in market settings where the quality
(or price) difference between different goods is substantial. For example, in the airline industry, the
quality and price difference between “first class” and “economy class” is large, hence, popular mar-
keting strategies such as “elite membership” or upgradable tickets, which can be interpreted as forms
of probabilistic selling, are likely profitable for airlines. Similarly, in the hotel industry, the quality
and price difference between hotels of different star ratings or rooms of different sizes and amenities
can be significant; hence, marketing strategies such as Delphina’s Formula Roulette Prestige program
or H10’s Tenerife Roulette program are attractive to consumers who dislike extreme budge allocation
between quality and money. On the other hand, for markets where product quality differences are
small and administrative costs are large, probabilistic selling may not be profitable in practice. Third,
a key result from our theory of optimal probabilistic selling is that under some technical conditions,
the market coverage increases as a result of probabilistic selling. In other words, fewer consumers
will be priced out of the market. Therefore, the practice of probabilistic selling not only improves
profit, but also increases economic efficiency. This takeaway is an important one for policy-makers as
well as for sellers who have a strategic interest in market penetration. Finally, our theory of optimal
probabilistic selling also provides direct guidance to practitioners when they implement the strategy.

The current paper has several limitations that are worth future exploration. First, although the
concept of λ-concavity is useful, many open questions remain. For example, for any strictly quasi-
concave utility function satisfying the regularity conditions and any distribution, does there exist a
λ ∈ (0,1) such that the pair is λ-concave? If not, what are the requirements for the utility function
and/or the distribution? Second, due to its abstract nature, the technical conditions of Proposition
5 may be difficult to interpret and apply in practice. Further characterization and generalization
would be theoretically interesting and practically valuable. Third, we abstracted away from the qual-
ity design of the component goods. For certain industries, exploring the implication of probabilistic
selling on the optimal quality design of component goods might be interesting. Fourth, we did not
consider competition among multiple sellers, which could be another interesting direction for future
research.
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Appendix
A. Main Proofs
To prove the lemmas and propositions in the main text, we need the following lemma first.

Lemma A.1 Let DH(w) be the utility difference between buying a high-quality component good and
buying a probabilistic good; let DL(w) be the utility difference between buying a low-quality component
good and buying a probabilistic good; and let D(w) be the utility difference between buying a high-
quality component good and buying a low-quality component good.

DH(w)≡ U(w− pH , qH)−λU(w− p, qH)− (1−λ)U(w− p, qL)

DL(w)≡ U(w− pL, qL)−λU(w− p, qH)− (1−λ)U(w− p, qL)

D(w)≡ U(w− pH , qH)−U(w− pL, qL).

Then, D(w) is strictly increasing in w, and ∀λ∈ (0,1) and ∀p∈ (pL, pH),
• DH(w) is strictly increasing in w;
• DL(w) is strictly decreasing in w.

Proof of Lemma A.1.
For D(w), we have

D(w) =
(
U(w− pH , qH)−U(w− pH , qL)

)
−
(
U(w− pL, qL)−U(w− pH , qL)

)
where the term in the first parentheses is strictly increasing in w thanks to the single-crossing
condition, whereas the term in the second parentheses is (weakly) decreasing in w because ∂2U/∂x2 ≤
0. Hence, D(w) is strictly increasing in w.

For DH(w), we have

DH(w) = U(w− pH , qH)−λU(w− p, qH)− (1−λ)U(w− p, qL)

= (1−λ)
(
U(w− pH , qH)−U(w− p, qL)

)
−λ
(
U(w− p, qH)−U(w− pH , qH)

)
= (1−λ)

(
U(w− pH , qH)−U(w− pH , qL)

)
+(1−λ)

(
U(w− pH , qL)−U(w− p, qL)

)
−λ
(
U(w− p, qH)−U(w− pH , qH)

)
= (1−λ)

(
U(w− pH , qH)−U(w− pH , qL)

)
− (1−λ)

(
U(w− p, qL)−U(w− pH , qL)

)
−λ
(
U(w− p, qH)−U(w− pH , qH)

)
The term in the first parentheses is strictly increasing in w thanks to the single-crossing condition,
whereas the term in the second parentheses and the term in the third parentheses are both (weakly)
decreasing in w because ∂2U/∂x2 ≤ 0. Hence, DH(w) is strictly increasing in w.



He and Rui: Probabilistic Selling in Vertically Differentiated Markets26

Similarly, for DL(w), we have

DL(w) = U(w− pL, qL)−λU(w− p, qH)− (1−λ)U(w− p, qL)

= λ
(
U(w− pL, qL)−U(w− p, qH)

)
+(1−λ)

(
U(w− pL, qL)−U(w− p, qL)

)
= λ

(
U(w− pL, qH)−U(w− p, qH)

)
−λ
(
U(w− pL, qH)−U(w− pL, qL)

)
+(1−λ)

(
U(w− pL, qL)−U(w− p, qL)

)
where the term in the first parentheses and the term in the third parentheses are both (weakly)
decreasing because ∂2U/∂x2 ≤ 0 and the term in the second parentheses is strictly increasing in w

thanks to the single-crossing condition. Hence, DL(w) is strictly decreasing in w.
■.

Proof of Proposition 1.
To see the ”if“ part, note that by the definition of p̄, we have, for any p < p̄,

λU(w0 − p, qH)+ (1−λ)U(w0 − p, qL)−U(w0 − pH , qH)

> λU(w0 − p̄, qH)+ (1−λ)U(w0 − p̄, qL)−U(w0 − pH , qH) = 0

λU(w0 − p, qH)+ (1−λ)U(w0 − p, qL)−U(w0 − pL, qL)

> λU(w0 − p̄, qH)+ (1−λ)U(w0 − p̄, qL)−U(w0 − pL, qL) = 0.

In other words, consumers with budget w0 strictly prefer the probabilistic good to either component
good. By the continuity of U , there exists a neighborhood (w0− ϵ,w0+ ϵ) such that consumers with
budget w ∈ (w0 − ϵ,w0 + ϵ) all strictly prefer the probabilistic good to either component good. By
the absolute continuity of the budget distribution, the demand for the probabilistic good is positive.

To show the “only if” part, we show its contrapositive statement: there is no demand for the
probabilistic good if p≥ p̄. It suffices to consider the following cases.

1. For consumers with w>w0, by Lemma A.1, we have

U(w− pH , qH)−λU(w− p, qH)− (1−λ)U(w− p, qL)

> U(w0 − pH , qH)−λU(w0 − p, qH)− (1−λ)U(w0 − p, qL)

≥ U(w0 − pH , qH)−λU(w0 − p̄, qH)− (1−λ)U(w0 − p̄, qL)

= 0

which implies that these consumers prefer the high-quality good to the probabilistic good.
2. For consumers with w<w0, by Lemma A.1, we have

U(w− pL, qL)−λU(w− p, qH)− (1−λ)U(w− p, qL)
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> U(w0 − pL, qL)−λU(w0 − p, qH)− (1−λ)U(w0 − p, qL)

≥ U(w0 − pL, qL)−λU(w0 − p̄, qH)− (1−λ)U(w0 − p̄, qL)

= 0

which implies that these consumers prefer the low-quality good to the probabilistic good.

By the absolute continuity of the budget distribution, the demand for the probabilistic good is zero.

We now show the equivalent characterization of positive demand via the pivotal consumer. By

definition of p̄ in (3), we have

λU(w0 − p̄, qH)+ (1−λ)U(w0 − p̄, qL) =U(w0 − pH , qH) =U(w0 − pL, qL)

Because λU(w0 − p, qH) + (1− λ)U(w0 − p, qL) is strictly decreasing in p, the condition of p < p̄ is

equivalent to the following:

λU(w0−p, qH)+(1−λ)U(w0−p, qL)>λU(w0− p̄, qH)+(1−λ)U(w0− p̄, qL) =U(w0−pH , qH) =U(w0−pL, qL).

But the left-hand-side is the expected utility of purchasing a probabilistic good for a pivotal consumer.

Hence, a probabilistic good has positive demand if and only if a pivotal consumer strictly prefers it

to any component good.

To prove wL <w0 <wH , we rewrite DH(w) and DL(w) in Lemma A.1 as functions of both w and

p:

DH(w,p)≡U(w− pH , qH)−λU(w− p, qH)− (1−λ)U(w− p, qL)

DL(w,p)≡U(w− pL, qL)−λU(w− p, qH)− (1−λ)U(w− p, qL).

By the definition of p̄, we have

DH(w0, p̄) =DL(w0, p̄) = 0.

By the definitions of wH and wL, for any p < p̄,

DH(wH , p) =DL(wL, p) = 0.

Hence, we have

DH(wH , p̄)>DH(wH , p) = 0=DH(w0, p̄) and DL(wL, p̄)>DL(wL, p) = 0=DL(w0, p̄).

By Lemma A.1, DH(w,p) is strictly increasing in w and DL(w,p) is strictly decreasing in w, hence

we have wH >w0 >wL.
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Finally, we show p̄ > λpH+(1−λ)pL which is equivalent to the following condition by the definition

of p̄ in (3),

λU(w0−λpH−(1−λ)pL, qH)+(1−λ)U(w0−λpH−(1−λ)pL, qL)>U(w0−pH , qH) =U(w0−pL, qL).

Denote f(λ) = λU(w0 −λpH − (1−λ)pL, qH)+ (1−λ)U(w0 −λpH − (1−λ)pL, qL). First, we note

f(0) = f(1) =U(w0 − pH , qH) =U(w0 − pL, qL).

It suffices to show f(λ) is strictly concave.

f ′(λ) = U(w0 −λpH − (1−λ)pL, qH) +λU1(w0 −λpH − (1−λ)pL, qH)(pL − pH)

−U(w0 −λpH − (1−λ)pL, qL) +(1−λ)U1(w0 −λpH − (1−λ)pL, qL)(pL − pH)

f ′′(λ)

pL − pH
= 2U1(w0 −λpH − (1−λ)pL, qH) +λU11(w0 −λpH − (1−λ)pL, qH)(pL − pH)

−2U1(w0 −λpH − (1−λ)pL, qL) +(1−λ)U11(w0 −λpH − (1−λ)pL, qL)(pL − pH)

Hence, f ′′(λ)< 0 is equivalent to

2
(
U1(w0 −λpH − (1−λ)pL, qH)−U1(w0 −λpH − (1−λ)pL, qL)

)
> (pH − pL)

(
λU11(w0 −λpH − (1−λ)pL, qH)+ (1−λ)U11(w0 −λpH − (1−λ)pL, qL)

)
which is obvious because the left-hand-side is positive by the single-crossing condition and the right-

hand-side is non-positive because U11 ≤ 0.

■.

Proof of Proposition 2

Because the seller does not have extra capacity, given the prices of the component goods (pH , pL),

probabilistic selling is profitable only if the revenue from the probabilistic goods exceeds the canni-

balized revenue from selling those component goods that consist of the probabilistic good. Hence, we

must have p > λpH+(1−λ)pL where the right-hand-side is the average unit revenue of the component

goods. Equivalently, we have w0 − p <w0 −λpH − (1−λ)pL = λ(w0 − pH)+ (1−λ)(w0 − pL).

U
(
λ(w0 − pH)+ (1−λ)(w0 − pL), λqH +(1−λ)qL

)
≥ U(w0 − p,λqH +(1−λ)qL)

≥ λU(w0 − p, qH)+ (1−λ)U(w0 − p, qL)

> λU(w0 − p̄, qH)+ (1−λ)U(w0 − p̄, qL)

= λU(w0 − pH , qH)+ (1−λ)U(w0 − pL, qL).
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where the first inequality is because U(w,q) increases in w; the second inequality follows from the

concavity of U with respect to quality improvement (i.e., ∂U 2/∂y2 ≤ 0); the third inequality is

because p < p̄ by Proposition 1; and the last equality follows from the definition of p̄:

λU(w0 − p̄, qH)+ (1−λ)U(w0 − p̄, qL) =U(w0 − pH , qH) =U(w0 − pL, qL).

So, U
(
λ(w0 − pH)+ (1−λ)(w0 − pL), λqH +(1−λ)qL

)
>λU(w0 − pH , qH)+ (1−λ)U(w0 − pL, qL).

Because the above inequality holds for any pH , qH , pL, and qL, we conclude that ∀λ∈ (0,1), and any

two distinct bundles (w1, q1) and (w2, q2) on the same indifference curve,

U
(
λ(w1, q1)+ (1−λ)(w2, q2)

)
>U(w1, q1) =U(w2, q2). (A.1)

The above is an equivalent definition of a strictly quasiconcave utility function when the utility

function is increasing in all attributes. Indeed, let U be increasing in each dimension. We want to show

U is (strictly) quasiconcave if and only if its indifference curves are (strictly) convex. The “only if”

part is obvious from the definition of (strict) quasiconcavity. For the “if” part, suppose U(x)>U(y),

then by reducing xi for those i where xi > yi, we can find a x̃ such that u(x̃) = u(y). Hence,

U
(
λx+(1−λ)y

)
≥U

(
λx̃+(1−λ)y

)
≥U(y).

The proof is complete by noting the equivalence between strictly convex preference and strictly

quasiconcave utility. ■.

Proof of Proposition 3

Suppose (pH , pL) are set optimally by the seller to maximize the profit in the absence of probabilistic

selling, i.e., (pH , pL) = (p∗h, p
∗
l ). Consider a candidate probabilistic good (p,λ) where p= λpH +(1−

λ)pL. From Proposition 1, we know p̄ > p, hence there is a positive demand for the probabilistic good.

To show the new profit from selling the probabilistic good to consumers with budget w ∈ [wL,wH ]

exceeds the lost profit from selling component goods to these same consumers, we compare the profit

from selling (pH , pL, λpH +(1−λ)pL, λ) with the profit from selling (pH , pL).

Because the seller collects the same amount of profit from consumers with budgets w ≤ wL or

w≥wH under the two selling strategies, the profit gain from probabilistic selling is

π =
(
p− (λcH +(1−λ)cL)

)
(F (wH)−F (wL))− (pH − cH)(F (wH)−F (w0))− (pL − cL)(F (w0)−F (wL))

=
(
p−λpH − (1−λ)pL

)
(F (wH)−F (wL))+ (pH − cH − pL + cL)

(
(F (w0)−F (wL))λ− (F (wH)−F (w0))(1−λ)

)
= (pH − cH − pL + cL)

(
(F (w0)−F (wL))λ− (F (wH)−F (w0))(1−λ)

)
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First, we show pH − cH − pL + cL > 0 when (pH , pL) are set optimally by the seller in the absence
of probabilistic selling. Because the objective function is

π0(pH , pL) = (pH − cH)
(
1−F (w0)

)
+(pL − cL)

(
F (w0)−F (w)

)
,

the first-order condition with respect to pH is

1−F (w0)− f(w0)(pH − cH)
∂w0

∂pH
+(pL − cL)f(w0)

∂w0

∂pH
= 0

⇐⇒ ∂w0

∂pH
=

1−F (w0)

f(w0)(pH − cH − pL + cL)

w0 is an implicit function of pH and pL determined by U(w0 − pH , qH) = U(w0 − pL, qL). Taking
derivative with respect to pH , we obtain

∂w0

∂pH
=

U1(w0 − pH , qH)

U1(w0 − pH , qH)−U1(w0 − pL, qL)
> 1

where the inequality follows from Lemma A.1. Therefore, we must have pH − cH − pL+ cL > 0. Note
this inequality implies that at the optimal prices (without probabilistic selling) p∗h and p∗l , selling the
probabilistic good (λp∗h+(1−λ)p∗l , λ) yields higher profit margin in the segment (wL,w0) but lower
profit margin in the segment (w0,wH), compared with not selling the probabilistic good, because

pH − cH −
[
λpH +(1−λ)pL −λcH − (1−λ)cL

]
= (1−λ)(pH − cH − pL + cL)> 0[

λpH +(1−λ)pL −λcH − (1−λ)cL
]
− (pL − cL) = λ(pH − cH − pL + cL)> 0.

It remains to note that π > 0 if (F (w0)−F (wL))λ> (F (wH)−F (w0))(1−λ) for some λ∈ (0,1),
or equivalently

F (w0)>λF (wL)+ (1−λ)F (wH).

The above is the condition of λ-concavity once we recognize wL = x, w0 = y, and wH = z for this
candidate probabilistic selling strategy.

■.

Proof of Example 2
By the definitions of wH , wL, w0 and for Cobb-Douglas utility, we have

(wH − pH)
1
α qH = (wH − p)

1
α
(
λqH +(1−λ)qL

)
(wL − pL)

1
α qL = (wL − p)

1
α
(
λqH +(1−λ)qL

)
Solving these equations, we obtain wH ,wL,w0 as functions of p,λ,

wH = p+
qαH(pH − p)

qαH − (λqH +(1−λ)qL)α
, wL = p+

qαL(p− pL)

(λqH +(1−λ)qL)α − qαL
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Recall
w0 =

qαHpH − qαLpL
qαH − qαL

= p+
qαH(pH − p)+ qαL(p− pL)

qαH − qαL
.

With uniform distribution, the condition of λ-concavity simplifies to

qαH(pH − p)+ qαL(p− pL)

qαH − qαL
>

λqαL(p− pL)

(λqH +(1−λ)qL)α − qαL
+

(1−λ)qαH(pH − p)

qαH − (λqH +(1−λ)qL)α
.

Because p= λpH +(1−λ)pL ⇒ λ(pH − p) = (1−λ)(p− pL), we can rewrite the above inequality as

(1−λ)qαH +λqαL
qαH − qαL

>
λ2qαL

(λqH +(1−λ)qL)α − qαL
+

(1−λ)2qαH
qαH − (λqH +(1−λ)qL)α

.

Denote h= qαH , l= qαL, m= (λqH +(1−λ)qL)
α, the above inequality simplifies to

λl+(1−λ)h> λ2l
(
1+

h−m

m− l

)
+(1−λ)2h

(
1+

m− l

h−m

)
⇐⇒ λ(1−λ)(h+ l)>λ2l

h−m

m− l
+(1−λ)2h

m− l

h−m

Pick λ= 1/2. The above inequality becomes

h
h− 2m+ l

h−m
> l

h− 2m+ l

m− l
⇐⇒ h

h−m
>

l

m− l
⇐⇒ m−1 ≤ h−1 + l−1

2

where the first step is because h−2m+ l > 0 by Jensen’s inequality for x 7→ xα and the last inequality
is by Jensen’s inequality for x 7→ x−α. ■.

Proof of Proposition 4
Take derivative of U(w0 − pH , qH) =U(w0 − pL, qL) on both sides with respect to pH and pL:

∂w0

∂pH
=

U1(w0 − pH , qH)

U1(w0 − pH , qH)−U1(w0 − pL, qL)
> 1,

∂w0

∂pL
=

−U1(w0 − pL, qL)

U1(w0 − pH , qH)−U1(w0 − pL, qL)
< 0.

where the inequalities follow from Lemma A.1. Therefore,

∂w0

∂pH
+
∂w0

∂pL
= 1. (A.2)

Similarly, recall the definitions of wH ,wL:

U(wH − pH , qH) = λU(wH − p, qH)+ (1−λ)U(wH − p, qL) (A.3)

U(wL − pL, qL) = λU(wL − p, qH)+ (1−λ)U(wL − p, qL). (A.4)

U1(wH − pH , qH)
∂wH

∂p
= λU1(wH − p, qH)

(∂wH

∂p
− 1
)
+(1−λ)U1(wH − p, qL)

(∂wH

∂p
− 1
)

U1(wH − pH , qH)
∂wH

∂λ
= U(wH − p, qH)−U(wH − p, qL)+

(
λU1(wH − p, qH)+ (1−λ)U1(wH − p, qL)

)∂wH

∂λ

U1(wH − pH , qH)
(∂wH

∂pH
− 1
)
= λU1(wH − p, qH)

∂wH

∂pH
+(1−λ)U1(wH − p, qL)

∂wH

∂pH
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U1(wL − pL, qL)
∂wL

∂p
= λU1(wL − p, qH)

(∂wL

∂p
− 1
)
+(1−λ)U1(wL − p, qL)

(∂wL

∂p
− 1
)

U1(wL − pL, qL)
∂wL

∂λ
= U(wL − p, qH)−U(wL − p, qL)+

(
λU1(wL − p, qH)+ (1−λ)U1(wL − p, qL)

)∂wL

∂λ

U1(wL − pL, qL)
(∂wL

∂pL
− 1
)
= λU1(wL − p, qH)

∂wL

∂pL
+(1−λ)U1(wL − p, qL)

∂wL

∂pL

∂wH

∂p
= 1− U1(wH − pH , qH)

U1(wH − pH , qH)−λU1(wH − p, qH)− (1−λ)U1(wH − p, qL)
< 0 (A.5)

∂wH

∂λ
=

U(wH − p, qH)−U(wH − p, qL)

U1(wH − pH , qH)−λU1(wH − p, qH)− (1−λ)U1(wH − p, qL)
> 0 (A.6)

∂wH

∂pH
=

U1(wH − pH , qH)

U1(wH − pH , qH)−λU1(wH − p, qH)− (1−λ)U1(wH − p, qL)
> 0 (A.7)

∂wL

∂p
= 1− U1(wL − pL, qL)

U1(wL − pL, qL)−λU1(wL − p, qH)− (1−λ)U1(wL − p, qL)
> 0 (A.8)

∂wL

∂λ
=

U(wL − p, qH)−U(wL − p, qL)

U1(wL − pL, qL)−λU1(wL − p, qH)− (1−λ)U1(wL − p, qL)
< 0 (A.9)

∂wL

∂pL
=

U1(wL − pL, qL)

U1(wL − pL, qL)−λU1(wL − p, qH)− (1−λ)U1(wL − p, qL)
< 0 (A.10)

where the inequalities are due to Lemma A.1. From the expressions above, we have

∂wH

∂p
+
∂wH

∂pH
= 1 and ∂wL

∂p
+
∂wL

∂pL
= 1 (A.11)

The profit gain from probabilistic selling is

π =
(
p−λcH − (1−λ)cL

)
(wH −wL)− (pH − cH)(wH −w0)− (pL − cL)(w0 −wL)

=
(
p−λcH − (1−λ)cL − pH + cH

)
(wH −w0)+

(
p−λcH − (1−λ)cL − pL + cL

)
(w0 −wL)

=
(
p−λpH − (1−λ)pH +(1−λ)c

)
(wH −w0)+

(
p− (1−λ)pL −λpL −λc

)
(w0 −wL)

=
(
p−λpH − (1−λ)pL

)
(wH −wL)+ (pH − pL − c)

(
λ(w0 −wL)− (1−λ)(wH −w0)

)
=
(
p−λpH − (1−λ)pL

)
(wH −wL)+ (pH − pL − c)

(
w0 −λwL − (1−λ)wH

)
By the first-order condition, the optimal solution (p∗, λ∗) satisfies

wH −wL +
(
p−λpH − (1−λ)pL

)(∂wH

∂p
− ∂wL

∂p

)
−(pH − pL − c)

(
λ
∂wL

∂p
+(1−λ)

∂wH

∂p

)
= 0 (A.12)

−(pH − pL)(wH −wL)+
(
p−λpH − (1−λ)pL

)(∂wH

∂λ
− ∂wL

∂λ

)
+(pH − pL − c)

(
wH −wL −λ

∂wL

∂λ
+(1−λ)

∂wH

∂λ

)
= 0 (A.13)

By the Envelope Theorem,

∂π∗(pH , pL)

∂pH
= −λ(wH −wL)+

(
p−λpH − (1−λ)pL

)∂wH

∂pH
+(w0 −wL)λ− (wH −w0)(1−λ)
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+(pH − pL − c)
(∂w0

∂pH
− (1−λ)

∂wH

∂pH

)
(A.14)

= w0 −wH +
(
p−λpH − (1−λ)pL

)∂wH

∂pH
+(pH − pL − c)

(∂w0

∂pH
− (1−λ)

∂wH

∂pH

)
∂π∗(pH , pL)

∂pL
= −(1−λ)(wH −wL)−

(
p−λpH − (1−λ)pL

)∂wL

∂pL
+(wH −w0)(1−λ)− (w0 −wL)λ

+(pH − pL − c)
(∂w0

∂pL
−λ

∂wL

∂pL

)
(A.15)

= wL −w0 −
(
p−λpH − (1−λ)pL

)∂wL

∂pL
+ pH − pL − c)

(∂w0

∂pL
−λ

∂wL

∂pL

)
Thus,

∂π∗(pH , pL)

∂pH
+
∂π∗(pH , pL)

∂pL
=wL −wH +

(
p−λpH − (1−λ)pL

)(∂wH

∂pH
− ∂wL

∂pL

)
+ (pH − pL − c)

(∂w0

∂pH
+
∂w0

∂pL
−λ

∂wL

∂pL
− (1−λ)

∂wH

∂pH

)
=wL −wH +

(
p−λpH − (1−λ)pL

)(∂wL

∂p
− ∂wH

∂p

)
+ (pH − pL − c)

(
1−λ

∂wL

∂pL
− (1−λ)

∂wH

∂pH

)
where the second equality is by (A.11) and (A.2). Hence, by (A.12), we have
∂π∗(pH , pL)

∂pH
+
∂π∗(pH , pL)

∂pL
= (pH − pL − c)

(
1−λ

∂wL

∂pL
− (1−λ)

∂wH

∂pH
−λ

∂wL

∂p
− (1−λ)

∂wH

∂p

)
= (pH − pL − c)

(
1−λ− (1−λ)

)
= 0

■.

Lemma A.2 Let F (x, y) :R2 →R be a twice differentiable function such that
∂2F

∂x2
+
∂2F

∂x∂y
=−a, ∂2F

∂x2
=
∂2F

∂y2
+ b

where a> 0 and b 6=−a are both constants. Let t∗ = a/(a+ b). Suppose (x0, y0) is a point such that
∂F

∂x

∣∣∣∣
(x0,y0)

+
∂F

∂y

∣∣∣∣
(x0,y0)

= 0.

Then, there exists a point (x∗, y∗) which is not necessarily unique, such that
∂F

∂x

∣∣∣∣
(x∗,y∗)

=
∂F

∂y

∣∣∣∣
(x∗,y∗)

= 0

if any of the following is true.
1.

∂F
∂x

∣∣
(x0,y0)

> 0, inf
x≥0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
> 0,

or ∂F
∂x

∣∣
(x0,y0)

< 0, sup
x≥0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
< 0,

in which case x∗ >x0, y∗ < y0 if b >−a, and x∗ >x0, y∗ > y0 if b <−a.
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2.

∂F
∂x

∣∣
(x0,y0)

> 0, inf
x≤0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
> 0,

or ∂F
∂x

∣∣
(x0,y0)

< 0, sup
x≤0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
< 0,

in which case x∗ <x0, y∗ > y0 if b >−a, and x∗ <x0, y∗ < y0 if b <−a.

Proof of Lemma A.2.
Without loss of generality, we assume (x0, y0) = (0,0). Denote

ϕ(x, y)≡ ∂2F

∂x2
=
∂2F

∂y2
+ b and ψ(x, y)≡ ∂2F

∂x∂y
.

Let t > 0 and define f(x) and g(x) as the following:

f(x) =
∂F

∂x

∣∣∣∣
(x,−tx)

, g(x) =
∂F

∂y

∣∣∣∣
(x,−tx)

,
df

dx
= ϕ(x,−tx)−tψ(x,−tx), dg

dx
=ψ(x,−tx)−t

(
ϕ(x,−tx)−b

)
.

We solve for t∗ and h∗ such that f(h∗) = g(h∗) = 0. The system of equations is the following

0 = f(h) = f(0)+

∫ h

0

ϕ(x,−tx)dx− t

∫ h

0

ψ(x,−tx)dx

0 = g(h) = g(0)+

∫ h

0

ψ(x,−tx)dx− t

∫ h

0

(
ϕ(x,−tx)− b

)
dx

= g(0)+

∫ h

0

ψ(x,−tx)dx− t

∫ h

0

ϕ(x,−tx)dx+ tbh

Adding the two equations above and noting that f(0)+ g(0) = 0, we obtain

tbh+(1− t)

(∫ h

0

ϕ(x,−tx)dx+
∫ h

0

ψ(x,−tx)dx
)

= 0 ⇐⇒

tbh+(1− t)

∫ h

0

(
∂2F

∂x2
+
∂2F

∂x∂y

)
dx = 0 ⇐⇒

tbh− (1− t)ah = 0 ⇐⇒

t(b+ a) = a

Let t∗ = a
a+b

. It remains to find h∗ that solves the following equation,∫ h∗

0

(
t∗ψ(x,−t∗x)−ϕ(x,−t∗x)

)
dx= f(0)

⇐⇒
∫ h∗

0

(
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

)
dx= f(0).

The existence of h∗ > 0 is guaranteed if either

inf
x≥0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
> 0, f(0)> 0
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or
sup
x≥0

{
a+(1+ t∗)

∂2F

∂x∂y

∣∣∣∣
(x,−t∗x)

}
< 0, f(0)< 0

in which case x∗ > x0. Clearly, y∗ < y0 if a+ b > 0 and y∗ > y0 if a+ b < 0. The other case can be
similarly proved. ■.

Proof of Proposition 5.
We first prove the profit function Π(pH , pL) = π0(pH , pL) + π∗(pH , pL) is strictly concave. We do

not require π0(pH , pL) be strictly concave because we only require (p∗h, p
∗
l ) satisfy the first-order

condition later in the proof.
Because π0(pH , pL) = (pH − cH)(1−w0)+ (pL− cL)(w0−w), taking derivative with respect to pH

and pL yields

∂π0(pH , pL)

∂pH
= 1−w0 − (pH − pL − c)

∂w0

∂pH
∂π0(pH , pL)

∂pL
= w0 −w− (pL − cL)

∂w

∂pL
− (pH − pL − c)

∂w0

∂pL

Using Equation (A.2), we have

∂π0(pH , pL)

∂pH
+
∂π0(pH , pL)

∂pL
= 1− (pH − pL − c)− pL

∂w

∂pL
+ cL

∂w

∂pL
−w

Taking derivative of the above equation with respect to pH and pL yields

∂2π0(pH , pL)

∂p2H
+
∂2π0(pH , pL)

∂pH∂pL
= −1

∂2π0(pH , pL)

∂p2L
+
∂2π0(pH , pL)

∂pH∂pL
= 1− 2

∂w

∂pL
− (pL − cL)

∂2w

∂p2L

By Proposition 4,
∂π∗(pH , pL)

∂pH
+
∂π∗(pH , pL)

∂pL
= 0.

Taking partial derivative of the above equality with respect to pH and pL yields

∂2π∗(pH , pL)

∂p2H
+
∂2π∗(pH , pL)

∂pH∂pL
= 0, and ∂2π∗(pH , pL)

∂pH∂pL
+
∂2π∗(pH , pL)

∂p2L
= 0.

Let
A=

∂2π0(pH , pL)

∂p2H
, B =

∂2π∗(pH , pL)

∂p2H
.

The Hessian matrix of Π(pH , pL) = π0(pH , pL)+π∗(pH , pL) is[
A −1−A

−1−A A+2− 2 ∂w

∂pL
− (pL − cL)

∂2w

∂p2
L

]
+
[
B −B
−B B

]
=

[
A+B −1−A−B

−1−A−B A+B+2− 2 ∂w

∂pL
− (pL − cL)

∂2w

∂p2
L

]
.
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Π(pH , pL) is strictly concave if and only if its Hessian matrix is negative definite, i.e.,

⇐⇒ A+B < 0 and (A+B)2 +
(
2− 2

∂w

∂pL
− (pL − cL)

∂2w

∂p2L

)
(A+B)− (A+B+1)2 > 0

⇐⇒ A+B < 0 and (A+B)

(
2
∂w

∂pL
+(pL − cL)

∂2w

∂p2L

)
<−1

⇐⇒ A+B <− 1

2 ∂w

∂pL
+(pL − cL)

∂2w

∂p2
L

< 0

Using U(w,q0) =U(w− pL, qL), we obtain

∂w

∂pL
=

U1(w− pL, qL)

U1(w− pL, qL)−U1(w,q0)
> 1

Because we have assumed w is linear in pL, Π(pH , pL) is strictly concave if

∂2Π(pH , pL)

∂p2H
=A+B <−1

2
.

We now show the above condition is equivalent to condition (7).

∂2π0(pH , pL)

∂p2H
= −2

∂w0

∂pH
− (pH − pL − c)

∂2w0

∂p2H
∂π∗(pH , pL)

∂pH
= w0 −wH +

(
p∗ −λ∗pH − (1−λ∗)pL

)∂wH

∂pH
+(pH − pL − c)

(∂w0

∂pH
− (1−λ∗)

∂wH

∂pH

)
= w0 −wH +

∂wH

∂pH

(
p∗ − pH + c(1−λ∗)

)
+(pH − pL − c)

∂w0

∂pH
∂2π∗(pH , pL)

∂p2H
= 2

∂w0

∂pH
− ∂∗wH

∂pH
+(pH − pL − c)

∂2w0

∂p2H
+
∂wH

∂pH

( ∂p∗
∂pH

− 1− c
∂λ∗

∂pH

)
+
(
p∗ − pH + c(1−λ∗)

) ∂∗

∂pH

∂wH

∂pH
∂2Π(pH , pL)

∂p2H
=
∂wH

∂pH

(
∂p∗

∂pH
− c

∂λ∗

∂pH
− 2

)
+
(
p− pH +(1−λ∗)c

) ∂∗

∂pH

(∂wH

∂pH

)
,

Π(pH , pL) is strictly concave if

∂2Π(pH , pL)

∂p2H
<−1

2
⇐⇒ ∂wH

∂pH

(
2− ∂p∗

∂pH
+ c

∂λ∗

∂pH

)
>

1

2
+
(
p∗ − pH +(1−λ∗)c

) ∂∗

∂pH

(∂wH

∂pH

)
,

which is condition (7).
We now apply Lemma A.2 to prove p∗H −p∗h ≥ p∗l −p∗L > 0, with F (x, y) =Π(pH , pL) and (x0, y0) =

(p∗h, p
∗
l ).

First, we need to check the assumptions of Lemma A.2. Π(pH , pL) satisfies the two partial differ-
ential equations of Lemma A.2 with

a= 1, b= 2

(
∂w

∂pL
− 1

)
> 0

∂2Π(pH , pL)

∂p2H
+
∂2Π(pH , pL)

∂pH∂pL
=

−1︷ ︸︸ ︷
∂2π0(pH , pL)

∂p2H
+
∂2π0(pH , pL)

∂pH∂pL
+

0︷ ︸︸ ︷
∂2π∗(pH , pL)

∂p2H
+
∂2π∗(pH , pL)

∂pH∂pL
=−1
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∂2Π(pH , pL)

∂p2H
− ∂2Π(pH , pL)

∂p2L
= 2

(
∂w

∂pL
− 1

)
+(pL − cL)

∂2w

∂p2L
= 2

(
∂w

∂pL
− 1

)
≡ b.

Because a= 1, b > 0, and A+B <− 1
2
, we have

a+(1+t∗)
∂2Π(pH , pL)

∂pH∂pL
= 1+

b+2

b+1

∂2Π(pH , pL)

∂pH∂pL
= 1− b+2

b+1
(1+A+B)> 1− b+2

2(b+1)
=

b

2(b+1)
> 0.

The condition for (x0, y0) = (p∗h, p
∗
l ) follows from Proposition 4 and the fact that (p∗h, p∗l ) maximizes

π0(pH , pL):

∂Π(pH , pL)

∂pH

∣∣∣∣
(p∗

h
,p∗

l
)

+
∂Π(pH , pL)

∂pL

∣∣∣∣
(p∗

h
,p∗

l
)

=
∂π0(pH , pL)

∂pH

∣∣∣∣
(p∗

h
,p∗

l
)

+
∂π0(pH , pL)

∂pL

∣∣∣∣
(p∗

h
,p∗

l
)

+
∂π∗(pH , pL)

∂pH

∣∣∣∣
(p∗

h
,p∗

l
)

+
∂π∗(pH , pL)

∂pL

∣∣∣∣
(p∗

h
,p∗

l
)

= 0+0+

(
∂π∗(pH , pL)

∂pH
+
∂π∗(pH , pL)

∂pL

)∣∣∣∣
(p∗

h
,p∗

l
)

= 0.

Finally, we show ∂π∗(pH , pL)/∂pH > 0 at (p∗h, p
∗
l ) if and only if (8) holds. We rewrite (A.12) and

(A.13), the first-order conditions for the optimal solution (p∗, λ∗), as

wH −wL +
∂wH

∂p

(
p− pH +(1−λ)c

)
− ∂wL

∂p

(
p− pL −λc

)
= 0 (A.16)

∂(wH −wL)

∂λ
p=

∂wH

∂λ
pH − ∂wL

∂λ
pL + c

(
wH −wL − (1−λ)

∂wH

∂λ
−λ

∂wL

∂λ

)
(A.17)

Because

∂π∗(pH , pL)/∂pH > 0

⇐⇒ w0 −wL +
(
p−λpH − (1−λ)pL

)∂wH

∂pH
+(pH − pL − c)

(∂w0

∂pH
− (1−λ)

∂wH

∂pH

)
>wH −wL,

by (A.16), this is equivalent to

w0 −wL +
(
p−λpH − (1−λ)pL

)∂wH

∂pH
+(pH − pL − c)

(∂w0

∂pH
− (1−λ)

∂wH

∂pH

)
>

∂wL

∂p

(
p− pL −λc

)
− ∂wH

∂p

(
p− pH +(1−λ)c

)
= (pH − pL − c)

(
λ
∂wL

∂p
+(1−λ)

∂wH

∂p

)
−
(
p−λpH − (1−λ)pL

)(∂wH

∂p
− ∂wL

∂p

)
.

Using (A.11), the above implies to

(
p−λpH − (1−λ)pL

)∂wL

∂pL
+w0 −wL > (pH − pL − c)

(∂w0

∂pL
−λ

∂wL

∂pL

)
⇐⇒ (p− pL −λc)

∂wL

∂pL
−wL > (pH − pL − c)

∂w0

∂pL
−w0.
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At (pH , pL) = (p∗h, p
∗
l ), the prices of the component goods satisfy the first-order conditions of the

following optimization problem

max
pH ,pL

π0(pH , pL) = (pH − cH)(1−w0)+ (pL − cL)(w0 −w).

In particular, the first-order condition with respect to pL is

−(pH−cH)
∂w0

∂pL
+w0−w+(pL−cL)

(∂w0

∂pL
− ∂w

∂pL

)
= 0 ⇐⇒ (pH−pL−c)

∂w0

∂pL
=w0−w−(pL−cL)

∂w

∂pL

Hence, ∂π∗(pH , pL)/∂pH > 0 if and only if

(p− pL −λc)
∂wL

∂pL
>wL −w− (pL − cL)

∂w

∂pL

which is condition (8).
The conclusion now follows from Lemma A.2 and the fact that Π(pH , pL) is strictly concave which

ensures the sufficiency of the first-order condition. Moreover, from the proof of Lemma A.2, we have

t∗ =
1

b+1
≤ 1 =⇒ p∗H − p∗h ≥ p∗l − p∗L.

■.
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B. Canonical Utility

Proof of Lemma 1.
Taking derivative of π(p,λ) with respect to p and setting it zero yields

λpHγ+(1−λ)pL(γ− 1)− p(γ− 1+λ)− (γ− 1+λ)
(
p−λpH − (1−λ)pL

)
= 0,

=⇒ p=
λ(2γ− 1+λ)pH +(1−λ)(2γ− 2+λ)pL

2(γ− 1+λ)
(B.1)

To derive ∂π(p,λ)/∂λ, we first collect the terms in π(p,λ) involving λ, which yields

1

1−λ

(
ppHγ+(p− pH)γpH − p2γ

)
+

1

λ

(
p2 + ppL(γ− 1)+ (p− pL)(γ− 1)pL − p2γ

)
.

Taking derivative of the above expression with respect to λ yields

(γ− 1)(p− pL)
2

λ2
− γ(pH − p)2

(1−λ)2
.

Setting the above expression to zero, we obtain(
1−λ

λ

)2

=
γ

γ− 1
· (pH − p)2

(pL − p)2
(B.2)

Using (B.1), we have

pH − p=
(1−λ)(2γ− 2+λ)(pH − pL)

2(γ− 1+λ)
, p− pL =

λ(2γ− 1+λ)(pH − pL)

2(γ− 1+λ)
.

Substitute the expressions above into (B.2), we obtain

γ− 1

γ
=

(
1+

1

1− 2γ−λ

)2

,

from which we can easily solve for its unique non-negative solution λ∗ =
√
γ(γ− 1)− γ+1. Substi-

tuting λ∗ into the second equation in (B.2), we obtain(
pH − p

pL − p

)2

=
γ− 1

γ

(
1−λ

λ

)2

= 1,

from which we have p∗ = (pH + pL)/2. Substitute p∗ into π(p,λ) to obtain

π∗(pH , pL) =
(1
2
−λ∗)(pH − pL)

λ∗γpH +(1−λ∗)(γ− 1)pL − γ−1+λ∗

2
(pH + pL)

λ∗(1−λ∗)

=
(1
2
−λ∗)(pH − pL)

(2λ∗γ− γ+1−λ∗)pH −
(
γ− 1+λ∗ − 2(1−λ∗)(γ− 1)

)
pL

2λ∗(1−λ∗)

=
(1
2
−λ∗

)2λ∗γ− γ+1−λ∗

2λ∗(1−λ∗)

(
pH − pL

)2
.

■.
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Proof of Proposition 6 .
For ease of exposition, we simplify the notation of (p∗, λ∗) by (p,λ). The total profit is

Π(pH , pL) =
(
p−λcH − (1−λ)cL

)
(wH −wL)+ (pH − cH)(1−wH)+ (pL − cL)(wL −w)

=
(
p−λcH − (1−λ)cL

)λpHγ+(1−λ)pL(γ− 1)− p(γ− 1+λ)

λ(1−λ)

+(pH − cH)(1−wH)+ (pL − cL)(wL − τpL)

where w= τpL, τ ≡ qL/(qL − q0)> 1, p= pH+pL
2

, and λ=
√
γ(γ− 1)− γ+1 by Lemma 1.

The first-order conditions with respect to pH and pL are given below:

∂Π

∂pH
=
λpHγ+(1−λ)pL(γ− 1)− p(γ− 1+λ)

2λ(1−λ)
+
(
p−λc− cL

)λγ− 1
2
(γ− 1+λ)

λ(1−λ)
+(

1− pH
1−λ

γ+
p

1−λ
(γ− 1+λ)

)
+(pH − cH)

(
γ− 1+λ

2(1−λ)
− γ

1−λ

)
+(pL − cL)

γ− 1+λ

2λ
= 0

∂Π

∂pL
=
λpHγ+(1−λ)pL(γ− 1)− p(γ− 1+λ)

2λ(1−λ)
+
(
p−λc− cL

)(1−λ)(γ− 1)− 1
2
(γ− 1+λ)

λ(1−λ)
+

(pH − cH)
γ− 1+λ

2(1−λ)
+
γ− 1+λ

2λ
pH − γ− 1+λ(2τ − 1)

λ
pL +

γ− 1+λ(2τ − 1)

2λ
cL = 0

Collecting terms for pH , pL, and p, we obtain

(λ2 − 2λγ−λ)pH +(1−λ)(λ+2γ− 2)pL +2p(λ2 +2λγ− 2λ− γ+1)+2λ(1−λ)
(
1+ γc

)
= 0

(λ+ γ+λγ− 1)pH +(1−λ)
(
1− γ− 2λ(2τ − 1)

)
pL − 2λγp− 2λ(1−λ)

(
(γ− 1)cH − (γ− 1+ τ)cL

)
= 0

Using the closed-form solution of (p,λ), we have the following system of linear equations:

(γ− 1+λ)+ 2λ(1−λ)

2λ(1−λ)
pH − γ− 1+λ

2λ(1−λ)
pL = 1+ γc

γ− 1+λ

2λ(1−λ)
pH − (γ− 1+λ)+ 2λ(1−λ)(2τ − 1)

2λ(1−λ)
pL = (γ− 1)cH − (γ− 1+ τ)cL

Denoting

κ≡ γ− 1+λ

2λ(1−λ)
=

√
γ(γ− 1)

2(γ−
√
γ(γ− 1)(

√
γ(γ− 1)− γ+1)

=
1

2
(
√
γ−

√
γ− 1)−2

and noticing that
(γ− 1+λ)+ 2λ(1−λ)

2λ(1−λ)
= κ+1,

we can rewrite the system of equations as{
(κ+1)pH −κpL = 1+ γc

κpH − (κ+1+2τ − 2)pL = (γ− 1)cH − (γ− 1+ τ)cL

from which we can explicitly solve for (p∗H , p
∗
L) as

p∗H =
κ+2τ − 1+

(
(2τ − 1)γ+κ

)
cH +

(
κ(τ − 1)− γ(2τ − 1)

)
cL

2τ(κ+1)− 1
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p∗L =
κ+(κ− γ+1)cH +

(
(τ − 1)(κ+1)+ γ

)
cL

2τ(κ+1)− 1

p∗ =
p∗H + p∗L

2
=

2κ+2τ − 1+
(
2κ+1+2γ(τ − 1)

)
cH +(τ − 1)(2κ− 2γ+1)cL

4τ(κ+1)− 2
.

Finally, using

p∗l =
2γ− 1+ γcH + γ(2τ − 1)cL
4γ(γ− 1+ τ)− (1− 2γ)2

,

we calculate the relative increase14 of market coverage after introducing probabilistic selling. The
market coverage is 1−w(p∗L) = 1− p∗Lτ with probabilistic selling and 1−w(p∗l ) = 1− p∗l τ without
probabilistic selling, hence the relative increase of market coverage is

p∗l − p∗L
1− p∗l τ

τ =

2γ−1+γcH+γ(2τ−1)cL
4γτ−1

− κ+(κ−γ+1)cH+((τ−1)(κ+1)+γ)cL
2τ(κ+1)−1

1− 2γ−1+γcH+γ(2τ−1)cL
4γτ−1

τ
τ

=
2γ− 1+ γcH + γ(2τ − 1)cL − κ(4γτ−1)+(4γτ−1)(κ−γ+1)cH+(4γτ−1)((τ−1)(κ+1)+γ)cL

2τ(κ+1)−1

2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL
τ

=
(2γ− 1)− κ(4γτ−1)

2τ(κ+1)−1
+
(
γ− (4γτ−1)(κ−γ+1)

2τ(κ+1)−1

)
cH +

(
γ(2τ − 1)− (4γτ−1)((τ−1)(κ+1)+γ)

2τ(κ+1)−1

)
cL

2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL
τ

=

(2γ−κ−1)(2τ−1)

2τ(κ+1)−1
− (2γ−κ−1)(1−2γτ)

2τ(κ+1)−1
cH − (2γ−κ−1)(2γτ+τ−1)

2τ(κ+1)−1
cL

2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL
τ

=
(2γ−κ− 1)(2τ − 1)+ (κ+1− 2γ)(1− 2γτ)cH +(κ+1− 2γ)(2γτ + τ − 1)cL(

2τ(κ+1)− 1
)(
2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL

) τ

=
2γ−κ− 1

2τ(κ+1)− 1
· 2τ − 1− (1− 2γτ)cH − (2γτ + τ − 1)cL

2γτ − 1+ τ − γτcH − γτ(2τ − 1)cL
.

■.

Proof of Lemma 2.
First, we extend the index set from {1, · · · , n} to {0,1, · · · , n,n+1} by assigning index i= 0 to the

high-quality good and i= n+1 to the low-quality good. Clearly, for the menu of probabilistic goods
to be optimal, ∀i ∈ {1, · · · , n}, the i-th probabilistic good must be optimal when it is considered as
the single probabilistic good constructed from the (i−1)-th good and the (i+1)-th good. Otherwise,
one can always adjust the design of the i-th probabilistic good to improve the profit due to the selling
of the i-th probabilistic good, thereby the total profit as well.

The quality of the i-th probabilistic good, denoted by qi, can be written as qi = λiqH +(1−λi)qL.
Applying Lemma 1, we have, ∀i∈ {1, · · · , n},

pi =
pi−1 + pi+1

2
and qi =

√
qi−1qi+1,

14 The relative increase of x2 over x1 is defined as (x2 −x1)/x1.



He and Rui: Probabilistic Selling in Vertically Differentiated Markets42

or equivalently,
pi+1 − pi = pi − pi−1 and qi+1

qi
=

qi
qi−1

.

In other words, the sequence of optimal prices forms a arithmetic sequence while the sequence of
qualities forms a geometric sequence. Therefore, we immediately have

pi =
pH − pL
n+1

(n− i+1)+ pL =
n+1− i

n+1
pH +

i

n+1
pL, and qi = r

i
n+1 qH .

Again, using the fact that qi = λiqH +(1−λi)qL, we have

λi =
qi − qL
qH − qL

=
r

i
n+1 − r

1− r
.

We think of the optimal n probabilistic goods on the menu as a sequence of goods introduced one
by one according to the ascending order of the index i. The first probabilistic good q1 is introduced
as a mix combining qH and qL. When introducing qi, it is obtained as a mix combining qi−1 and qL,
i.e., {λ′

i, qi−1; (1−λ′
i), qL}. In this way, we can calculate the incremental profit from introducing qi to

the menu according to π in problem (9). According to the definition of optimal offering probability
λi, we have λi = λ′

i · λi−1. Thus, the optimal profit from selling n probabilistic good π(n) based on
the optimal pricing and probability is given by

π(n) =
n∑

i=1

πi(λ
′
i, pi) (B.3)

with λ′
i =

λi
λi−1

, γi = qi−1

qi−1−qL
, and qi = λiqH +(1−λi)qL.

For any i∈ {1,2, ..., n}, the profit increase is given by

πi(λ
′
i, pi) = (pi −λ′

i(pi−1 − pL)− pL)
λ′
ipi−1γi +(1−λ′

i)pL(γi − 1)− pi(γi − 1+λ′
i)

λ′
i(1−λ′

i)

From the main text, we have

pi =
n+1− i

n+1
∆p+ pL,∆p= pH − pL, λi =

r
i

n+1 − r

1− r
,λ′

i =
λi

λi−1

=
r

i
n+1 − r

r
i−1
n+1 − r

γi =
qi−1

qi−1 − qL
=
λi−1(qH − qL)+ qL
λi−1(qH − qL)

= 1+
qL

qH − qL

1

λi−1

Substituting these expressions into πi, we have

πi(pi, λ
′
i) =(

n+1− i

n+1
∆p− r

i
n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p

)

(

n+2−i
n+1

∆p+ pL
)(

1+ qL
qH−qL

1−r

r
i−1
n+1 −r

)
1− r

i
n+1 −r

r
i−1
n+1 −r

+

pL
qL

qH−qL

1−r

r
i−1
n+1 −r

r
i

n+1 −r

r
i−1
n+1 −r

−

(
n+1−i
n+1

∆p+ pL
)(

qL
qH−qL

1−r

r
i−1
n+1 −r

+ r
i

n+1 −r

r
i−1
n+1 −r

)
(

r
i

n+1 −r

r
i−1
n+1 −r

)(
1− r

i
n+1 −r

r
i−1
n+1 −r

)

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=∆p

(
n+1− i

n+1
− r

i
n+1 − r

r
i−1
n+1 − r

n+2− i

n+1

)

(

n+2−i
n+1

∆p+ pL
)(

r
i−1
n+1 − r+ qL

qH−qL
(1− r)

)
r

i−1
n+1 − r

i
n+1

+
pL

qL
qH−qL

(1− r)

r
i

n+1 − r
−

(
n+1−i
n+1

∆p+ pL
)(

qL
qH−qL

(1− r)+ r
i

n+1 − r
)

(
r

i
n+1 − r

)(
1− r

i
n+1 −r

r
i−1
n+1 −r

)


Notice that qL
qH−qL

(1− r) = r, we have

πi(pi, λ
′
i) =

=∆p

(
n+1− i

n+1
− r

i
n+1 − r

r
i−1
n+1 − r

n+2− i

n+1

)
(

n+2−i
n+1

∆p+ pL
)(

r
i−1
n+1

)
r

i−1
n+1 − r

i
n+1

+
pLr

r
i

n+1 − r
−

(
n+1−i
n+1

∆p+ pL
)(

r
i

n+1

)
(
r

i
n+1 − r

)(
1− r

i
n+1 −r

r
i−1
n+1 −r

)


=∆p

(
n+1− i

n+1
− r

i
n+1 − r

r
i−1
n+1 − r

n+2− i

n+1

)
(

n+2−i
n+1

∆p+ pL
)

1− r
1

n+1

+
pLr

r
i

n+1 − r
−

(
n+1−i
n+1

∆p+ pL
)
r

i
n+1 (r

i−1
n+1 − r)(

r
i

n+1 − r
)(

r
i−1
n+1 − r

i
n+1

)


After expanding, we have

πi(pi, λ
′
i) =

(
n+2−i
n+1

∆p+ pL
)

1− r
1

n+1

n+1− i

n+1
∆p+

pLr

r
i

n+1 − r

n+1− i

n+1
∆p−

(
n+1−i
n+1

∆p+ pL
)
r

i
n+1 (r

i−1
n+1 − r)(

r
i

n+1 − r
)(

r
i−1
n+1 − r

i
n+1

) n+1− i

n+1
∆p

−

(
n+2−i
n+1

∆p+ pL
)

1− r
1

n+1

r
i

n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p− pLr

r
i

n+1 − r

r
i

n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p

+

(
n+1−i
n+1

∆p+ pL
)
r

i
n+1 (r

i−1
n+1 − r)(

r
i

n+1 − r
)(

r
i−1
n+1 − r

i
n+1

) r
i

n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p

=

(
n+2−i
n+1

∆p+ pL
)

1− r
1

n+1

n+1− i

n+1
∆p+

pLr

r
i

n+1 − r

n+1− i

n+1
∆p−

(
n+1−i
n+1

∆p+ pL
)
r

i
n+1 (r

i−1
n+1 − r)(

r
i

n+1 − r
)(

r
i−1
n+1 − r

i
n+1

) n+1− i

n+1
∆p

−

(
n+2−i
n+1

∆p+ pL
)

1− r
1

n+1

r
i

n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p− pLr

r
i

n+1 − r

r
i

n+1 − r

r
i−1
n+1 − r

n+2− i

n+1
∆p

+
r

i
n+1

r
i−1
n+1 − r

i
n+1

(
n+1− i

n+1
∆p+ pL

)
n+2− i

n+1
∆p

=
1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p+

r

r
i

n+1 − r

(
n+1− i

n+1

)
pL∆p

− 1

r
−1
n+1 − 1

r
i−1
n+1 − r

r
i

n+1 − r

(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

− 1

1− r
1

n+1

r
i

n+1 − r

r
i−1
n+1 − r

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p− r

r
i

n+1 − r

r
i

n+1 − r

r
i−1
n+1 − r

(
n+2− i

n+1

)
pL∆p

+
1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

=
1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p− 1

1− r
1

n+1

r
i

n+1 − r

r
i−1
n+1 − r

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

+
1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p− 1

r
−1
n+1 − 1

r
i−1
n+1 − r

r
i

n+1 − r

(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

+
r

r
i

n+1 − r

(
n+1− i

n+1

)
pL∆p− r

r
i

n+1 − r

r
i

n+1 − r

r
i−1
n+1 − r

(
n+2− i

n+1

)
pL∆p
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=
1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1
− 1

n+1

)
∆p− 1

1− r
1

n+1

r
i

n+1 − r

r
i−1
n+1 − r

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

+
1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1
+

1

n+1

)
∆p− 1

r
−1
n+1 − 1

r
i−1
n+1 − r

r
i

n+1 − r

(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

+

γi︷ ︸︸ ︷
r

r
i

n+1 − r

(
n+1− i

n+1

)
pL∆p− r

r
i−1
n+1 − r

(
n+2− i

n+1

)
pL∆p (B.4)

Now, we first simplify the first four terms in (B.4) as

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

1

1− r
1

n+1

(
1− r

i
n+1 − r

r
i−1
n+1 − r

)
− ∆p

n+1

1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)

+

(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

1

r
−1
n+1 − 1

(
1− r

i−1
n+1 − r

r
i

n+1 − r

)
+

∆p

n+1

1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)
=

(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

1

1− r
n+2−i
n+1

− ∆p

n+1

1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)
−
(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

1

1− r
n+1−i
n+1

+
∆p

n+1

1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)

=

Ai︷ ︸︸ ︷(
n+2− i

n+1
∆p+ pL

)(
n+2− i

n+1

)
∆p

1

1− r
n+2−i
n+1

−
(
n+1− i

n+1
∆p+ pL

)(
n+1− i

n+1

)
∆p

1

1− r
n+1−i
n+1

Bi︷ ︸︸ ︷
− ∆p

n+1

1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)
+

∆p

n+1

1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

)
Therefore, we have πi(pi, λ

′
i) = Ai +Bi + γi. To find π(n) =

∑n

i=1 πi, we sum Ai, Bi, and γi from
i= 1 to n separately below.

n∑
i=1

Ai =

(
n+1

n+1
∆p+ pL

)(
n+1

n+1

)
∆p

1

1− r
n+1
n+1

−
(

n

n+1
∆p+ pL

)(
n

n+1

)
∆p

1

1− r
n

n+1

+

(
n

n+1
∆p+ pL

)(
n

n+1

)
∆p

1

1− r
n

n+1
−
(
n− 1

n+1
∆p+ pL

)(
n− 1

n+1

)
∆p

1

1− r
n−1
n+1

+

(
n− 1

n+1
∆p+ pL

)(
n− 1

n+1

)
∆p

1

1− r
n−1
n+1

−
(
n− 2

n+1
∆p+ pL

)(
n− 2

n+1

)
∆p

1

1− r
n−2
n+1

· · · · · ·

+

(
3

n+1
∆p+ pL

)(
3

n+1

)
∆p

1

1− r
3

n+1

−
(

2

n+1
∆p+ pL

)(
2

n+1

)
∆p

1

1− r
2

n+1

+

(
2

n+1
∆p+ pL

)(
2

n+1

)
∆p

1

1− r
2

n+1

−
(

1

n+1
∆p+ pL

)(
1

n+1

)
∆p

1

1− r
1

n+1

=

(
n+1

n+1
∆p+ pL

)(
n+1

n+1

)
∆p

1

1− r
n+1
n+1

−
(

1

n+1
∆p+ pL

)(
1

n+1

)
∆p

1

1− r
1

n+1

= (∆p+ pL)∆p
1

1− r
−
(

∆p

n+1
+ pL

)(
∆p

n+1

)
1

1− r
1

n+1
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=
pH∆p

1− r
−

(
∆p
n+1

+ pL

)(
∆p
n+1

)
1− r

1
n+1

n∑
i=1

Bi =
n∑

i=1

(
− ∆p

n+1

1

1− r
1

n+1

(
n+2− i

n+1
∆p+ pL

)
+

∆p

n+1

1

r
−1
n+1 − 1

(
n+1− i

n+1
∆p+ pL

))
=− ∆p

n+1

1

1− r
1

n+1

n∑
i=1

(
n+2− i

n+1
∆p+ pL

)
+

∆p

n+1

1

r
−1
n+1 − 1

n∑
i=1

(
n+1− i

n+1
∆p+ pL

)
=− ∆p

n+1

1

1− r
1

n+1

((
n

2
+

n

n+1

)
∆p+npL

)
+

∆p

n+1

1

r
−1
n+1 − 1

(n
2
∆p+npL

)
=

∆p

n+1

(
−1

1− r
1

n+1

(n
2
∆p+npL

)
+

n

1+n
∆p

−1

1− r
1

n+1

+
r

1
n+1

1− r
1

n+1

(n
2
∆p+npL

))

=
∆p

n+1

(
−
(n
2
∆p+npL

)
− n

1+n

1

1− r
1

n+1

∆p

)
=− n

n+1

(
∆p2

2
+ pL∆p+∆p2

1
n+1

1− r
1

n+1

)

n∑
i=1

γi =
n∑

i=1

(
pL∆p

r

r
i

n+1 − r

(
n+1− i

n+1

)
− pL∆p

r

r
i−1
n+1 − r

(
n+2− i

n+1

))
= pL∆p

r

r
1

n+1 − r

(
n

n+1

)
− pL∆p

r

r
0

n+1 − r

(
n+1

n+1

)
+ pL∆p

r

r
2

n+1 − r

(
n− 1

n+1

)
− pL∆p

r

r
1

n+1 − r

(
n

n+1

)
+ pL∆p

r

r
3

n+1 − r

(
n− 2

n+1

)
− pL∆p

r

r
2

n+1 − r

(
n− 1

n+1

)
· · · · · ·

+ pL∆p
r

r
n−1
n+1 − r

(
2

n+1

)
− pL∆p

r

r
n−2
n+1 − r

(
3

n+1

)
+ pL∆p

r

r
n

n+1 − r

(
1

n+1

)
− pL∆p

r

r
n−1
n+1 − r

(
2

n+1

)
= pL∆p

r

r
n

n+1 − r

(
1

n+1

)
− pL∆p

r

r
0

n+1 − r

(
n+1

n+1

)
= pL∆p

(
1

n+1

1

r
−1
n+1 − 1

− r

1− r

)
Using π(n) =

∑n

i=1 πi =
∑n

i=1(Ai +Bi + γi), we have

π(n) =
pH∆p

1− r
−

∆p
n+1

(
∆p
n+1

+ pL

)
1− r

1
n+1

− n

n+1

(
∆p2

2
+ pL∆p+∆p2

1
n+1

1− r
1

n+1

)
+pL∆p

(
1

n+1

r−
1

n+1 − 1
− r

1− r

)
■.
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Proof of Proposition 7.
When the seller offers n PS goods, the optimal pricing problem is as follows.

max
pH ,pL,pi,λi,i∈{1,...,n}

Π(pH , pL, p1, ..., pn, λ1, ..., λn) =

(pH − cH)(1−w0,1)+ (pL − cL)(wn,n+1 − τpL)+
n∑

i=1

(
pi −λicH − (1−λi)cL

)
(wi−1,i −wi,i+1)

Similar to how we solved the optimal component-good pricing problem when a single probabilistic
good is offered, we solve the above problem using backward induction. Thanks to Lemma 2, we have
the optimal pi and λi given below:

λi =
r

i
n+1 − r

1− r
, pi =

n+1− i

n+1
pH +

i

n+1
pL.

with p0 = pH and pn+1 = pL, λ0 = 1 and λn+1 = 0.
From Equation (10), we have

wi−1,i =
(λi−1(qH − qL)+ qL)pi−1 − (λi(qH − qL)+ qL)pi

(λi−1 −λi)(qH − qL)

=
(λi−1 + γ− 1)pi−1 − (λi + γ− 1)pi

λi−1 −λi

=
λi−1 + γ− 1

λi−1 −λi

(
n+2− i

n+1
pH +

i− 1

n+1
pL

)
− λi + γ− 1

λi−1 −λi

(
n+1− i

n+1
pH +

i

n+1
pL

)
In particular, we have

w0,1 =
γ

1−λ1

pH − λ1 + γ− 1

1−λ1

(
n

n+1
pH +

1

n+1
pL

)
wn,n+1 =

λn + γ− 1

λn

(
1

n+1
pH +

n

n+1
pL

)
− γ− 1

λn

pL.

To express the profit as a function of pH and pL , we calculate wi−1,i −wi,i+1 below.

wi−1,i −wi,i+1 =
λi−1 + γ− 1

λi−1 −λi

(
n+2− i

n+1
pH +

i− 1

n+1
pL

)
− λi + γ− 1

λi−1 −λi

(
n+1− i

n+1
pH +

i

n+1
pL

)
− λi + γ− 1

λi −λi+1

(
n+1− i

n+1
pH +

i

n+1
pL

)
+
λi+1 + γ− 1

λi −λi+1

(
n− i

n+1
pH +

i+1

n+1
pL

)
=

(
λi−1 + γ− 1

λi−1 −λi

n+2− i

n+1
− λi + γ− 1

λi−1 −λi

n+1− i

n+1
− λi + γ− 1

λi −λi+1

n+1− i

n+1
+
λi+1 + γ− 1

λi −λi+1

n− i

n+1

)
pH

+

(
λi−1 + γ− 1

λi−1 −λi

i− 1

n+1
− λi + γ− 1

λi−1 −λi

i

n+1
− λi + γ− 1

λi −λi+1

i

n+1
+
λi+1 + γ− 1

λi −λi+1

i+1

n+1

)
pL

=
1

n+1
(pH − pL).

Note that in the last step, we used the fact that for any i,

λi + γ− 1

λi −λi+1

=
r

i
n+1 −r
1−r

+ 1
1−r

− 1

r
i

n+1 −r
1−r

− r
i+1
n+1 −r
1−r

=
1

1− r
1

n+1
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λi+1 + γ− 1

λi −λi+1

=
λi + γ− 1

λi −λi+1

− 1 =
r

1
n+1

1− r
1

n+1

.

Therefore, we can rewrite the objective function as

Π(pH , pL, p1, ..., pn, λ1, ..., λn) = (pH − cH)

(
1− γ

1−λ1
pH + λ1+γ−1

1−λ1

(
n

n+1
pH + 1

n+1
pL

))
+(pL − cL)

(
λn+γ−1

λn

(
1

n+1
pH + n

n+1
pL

)
− γ−1

λn
pL − τpL

)
+pH−pL

n+1

∑n

i=1

(
n+1−i
n+1

pH + i
n+1

pL −λicH − (1−λi)cL

)
where we used the fact w= τpL with τ ≡ qL

qL−q0
.

Taking partial derivative with respect to pH , we have

∂Π

∂pH
=

(
1− γ

1−λ1

pH +
λ1 + γ− 1

1−λ1

( n

n+1
pH +

1

n+1
pL

))
+(pH − cH)

(
− γ

1−λ1

+
λ1 + γ− 1

1−λ1

n

n+1

)
+(pL − cL)

λn + γ− 1

λn

1

n+1

+
n∑

i=1

(
n+1− i

n+1

( 1

n+1
pH − 1

n+1
pL
)
+
(n+1− i

n+1
pH +

i

n+1
pL −λicH − (1−λi)cL

) 1

n+1

)
=

(
λ1 + γ− 1

1−λ1

n

n+1
− γ

1−λ1

− γ

1−λ1

+
λ1 + γ− 1

1−λ1

n

n+1
+

n∑
i=1

2
n+1− i

n+1

1

n+1

)
pH

+

(
λ1 + γ− 1

1−λ1

1

n+1
+
λn + γ− 1

λn

1

n+1
+

n∑
i=1

(
− n+1− i

n+1

1

n+1
+

i

n+1

1

n+1

))
pL

+1− cH

(
− γ

1−λ1

+
λ1 + γ− 1

1−λ1

n

n+1

)
− cL

λn + γ− 1

λn

1

n+1
−

n∑
i=1

(
λicH +(1−λi)cL

) 1

n+1

Setting ∂Π/∂pH = 0, we have

2

(
nλ1 −n− γ

1−λ1

+
n∑

i=1

n+1− i

n+1

)
︸ ︷︷ ︸

A11

p∗H +

(
γ(λn −λ1)+ γ− 1+λ1

(1−λ1)λn

−
n∑

i=1

(n+1− 2i

n+1

))
︸ ︷︷ ︸

A12

p∗L

=

( n∑
i=1

λi +
nλ1 −n− γ

1−λ1

)
cH +

( n∑
i=1

(1−λi)+
λn + γ− 1

λn

)
cL − (n+1)︸ ︷︷ ︸

A13

Note that
λi =

r
i

n+1 − r

1− r
, γ =

1

1− r
.

We can simplify A11 and A12

A11 = 2
nλ1 −n− γ

1−λ1

+n=−n− 2γ

1−λ1

=−n− 2

1− r
1

n+1

A12 =
γ(λn −λ1)+ γ− 1+λ1

(1−λ1)λn

= 1+
2r

1
n+1

1− r
1

n+1
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It’s easy to see that A11 +A12 =−n− 1. Noting that
n∑

i=1

λi =
1− rn

(1− r)2
r

1
n+1 − nr

1− r
,

n∑
i=1

(1−λi) =
n

1− r
− 1− rn

(1− r)2
r

1
n+1 ,

we can write A13 as

A13 =

(
1− rn

(1− r)2
r

1
n+1 − n

1− r
− 1

1− r
1

n+1

)
cH +

(
n

1− r
− 1− rn

(1− r)2
r

1
n+1 +

1

1− r
1

n+1

)
cL − (n+1)

Taking partial derivative with respect to pL, we have

∂Π

∂pL
=(pH − cH)

λ1 + γ− 1

1−λ1

1

n+1

+
λn + γ− 1

λn

(
1

n+1
pH +

n

n+1
pL

)
− γ− 1

λn

pL − τpL +(pL − cL)

(
λn + γ− 1

λn

n

n+1
− γ− 1

λn

− τ

)
+

n∑
i=1

(
i

n+1

( 1

n+1
pH − 1

n+1
pL

)
−
(n+1− i

n+1
pH +

i

n+1
pL −λicH − (1−λi)cL

) 1

n+1

)
=

(
λ1 + γ− 1

1−λ1

1

n+1
+
λn + γ− 1

λn

1

n+1
+

n∑
i=1

( i

n+1

1

n+1
− n+1− i

n+1

1

n+1

))
pH

+2

(
λn + γ− 1

λn

n

n+1
− γ− 1

λn

− τ −
n∑

i=1

i

n+1

1

n+1

)
pL −

(
λ1 + γ− 1

1−λ1

1

n+1
−

n∑
i=1

λi

1

n+1

)
cH

−
(
λn + γ− 1

λn

n

n+1
− γ− 1

λn

− τ −
n∑

i=1

1−λi

n+1

)
cL

Setting ∂Π/∂pL = 0, we have(
γ(λn −λ1)+ γ− 1+λ1

(1−λ1)λn

−
n∑

i=1

(n+1− 2i

n+1

))
︸ ︷︷ ︸

A21

p∗H +2

(
nλn − γ+1

λn

− τ(n+1)−
n∑

i=1

i

n+1

)
︸ ︷︷ ︸

A22

p∗L

=

(
λ1 + γ− 1

1−λ1

−
n∑

i=1

λi

)
cH +

(
nλn − γ+1

λn

− (n+1)τ −
n∑

i=1

(1−λi)

)
cL︸ ︷︷ ︸

A23

We can simplify A21, A22 and A23 as

A21 =
γ(λn −λ1)+ γ− 1+λ1

(1−λ1)λn

=A12

A22 = n− 2γ− 2

λn

− 2τ(n+1) 6=A11

A23 =

(
λ1 + γ− 1

1−λ1

−
n∑

i=1

λi

)
cH +

(
1−λn − γ

λn

+(n+1)(1− τ)−
n∑

i=1

(1−λi)

)
cL

=

(
r

1
n+1

1− r
1

n+1

+
nr

1− r
− 1− rn

(1− r)2
r

1
n+1

)
cH −

(
n

1− r
− 1− rn

(1− r)2
r

1
n+1 +

1

1− r
1

n+1

− (n+1)(1− τ)

)
cL
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ζ ≡ 2

1− r
1

n+1

=⇒A11 =−(ζ +n), A22 =−(ζ +n)− 2(τ − 1)(n+1) A12 =A21 = ζ − 1.

It remains to solve the following system of linear equations:

(ζ +n)p∗H − (ζ − 1)p∗L = n+1−
( 1− rn

(1− r)2
r

1
n+1 − n

1− r
− ζ

2

)
cH

−
( n

1− r
− 1− rn

(1− r)2
r

1
n+1 +

ζ

2

)
cL

(ζ − 1)p∗H −
(
(ζ +n)+ 2(τ − 1)(n+1)

)
p∗L =

(ζ
2
− 1+

nr

1− r
− 1− rn

(1− r)2
r

1
n+1

)
cH

−
( n

1− r
− 1− rn

(1− r)2
r

1
n+1 +

ζ

2
− (n+1)(1− τ)

)
cL

Subtracting the second equation from the first one and dividing both sides by (n+1), we obtain

p∗H +(2τ − 1)p∗L = 1+ cH − (1− τ)cL.

Substituting p∗L =
1+cH−(1−τ)cL−p∗H

2τ−1
into the first equation, we obtain

p∗H =
1

ζ(1+ 1
2τ−1

)+n− 1
2τ−1

(
ζ − 1

2τ − 1
+n+1+ c

( n

1− r
+
ζ

2
− 1− rn

(1− r)2
r

1
n+1

)
+ cH

ζ − 1

2τ − 1

)
p∗L =

1+ cH − (1− τ)cL − p∗H
2τ − 1

=
1+ cH − (1− τ)cL

2τ − 1

− 1

(2τ − 1)
(
ζ(1+ 1

2τ−1
)+n− 1

2τ−1

)( ζ − 1

2τ − 1
+n+1+ c

( n

1− r
+
ζ

2
− 1− rn

(1− r)2
r

1
n+1

)
+ cH

ζ − 1

2τ − 1

))
■.


