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1 Introduction

Online platforms and digital markets increasingly match customers with massive number

of heterogeneous goods and services. One prominent example is online display advertising,

which refers broadly to text, graphical, video, or interactive advertisements that mobile and

Internet users encounter when they browse non-search web pages or interact with applica-

tions. Due to increasingly sophisticated digital tracking and predictive analytics,5 display

advertisers can now distinguish audiences at a granular level, resulting in numerous audience

types: one category, for instance, could be young, male, high-income adults who love video

games and live in urban areas. McAfee et al. (2010) report that advertiser campaigns can

have trillions of distinct audience categories to choose from, just based on demographics,

geographic location, and interests-based “behavioral” attributes. Naturally, with refined

audience categories, advertisers (or even campaigns) can demonstrate heterogeneous substi-

tution preferences. For example, a video game company may value audience categories that

include young male adults regardless of their locations, while a casino may value audience

categories that include adults in close vicinity regardless of their gender or age. Thus, the

casino would not mind substituting impressions from young adults with those from older

adults (perhaps for a lower cost). Such heterogeneous substitution preferences also exist

in many other online matching markets that feature numerous differentiated products or

services, such as vacation rental marketplace (e.g., Airbnb and HomeAway) crowd-sourcing

labor markets (e.g., Amazon Mechanical Turk), and micro loans (e.g. LendingClub and

Prosper).

While there are gains from substituting one type of goods with another, there are also

preferences that could limit substitution, such as preferences for smooth consumption over

time and for cross-sectional diversification. For example, the video game company may

5For example, in Internet advertising, an Internet user’s past behavior and geographic location can be
tracked using browser cookies, allowing advertisers to draw inferences about a user’s demographic background
and interests. In mobile advertising, device and content characteristics, as well as geographic information
may also be used to target and predict user interests.
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prefer that their ad impressions reach all geographical locations; the casino may prefer that

impressions be evenly distributed throughout a month. We argue that such preferences can

be captured by risk aversion, a concept from the utility theory in economics. Indeed, risk

aversion has been used in insurance and finance industries since very early time for similar

purposes (e.g., Harry M. Markowitz, 1959).

To our knowledge, existing literature has not simultaneously modeled heterogeneous sub-

stitution preferences and heterogeneous risk aversion in a unified framework. Moreover, given

the nature of the applications, it is critical that any new modeling approach can handle mas-

sive number of distinct good types computationally. To fill this gap, we formulate a new

allocation problem that is well-motivated from the economic theory and captures heteroge-

neous substitution and risk-aversion preferences. We then address a formidable challenge of

developing a new theory-driven algorithm that can solve the proposed allocation problem at

very large scales.

Our new allocation problem allows many types of goods to be allocated among many

agents, each with a concave valuation (for modeling risk aversion) and a unique substitution

preference. The objective of the problem is to maximize total realized values of all agents,

subject to resource availability constraints. We call such a formulation a nonlinear allocation

with substitution (NAS). The solution to such problems holds implications for online display

advertising and potentially many other online matching markets.

Our model and solution approaches could be useful for digital display advertising market,

which is expected to reach $32 billion in US revenue in 2016, and continues to grow rapidly

at a rate of over 10% per year (EMarketer, 2016). Specifically, our approaches are particu-

larly relevant to demand-side platforms (DSPs), which buy display ads from ad exchanges,

publisher networks, and other advertising properties on behalf of their member advertis-

ers. Because a DSP can represent many advertisers, it must allocate impressions internally

among member advertisers. A critical advantage of DSPs over the conventional ad agency

is their allocative efficiency (Vidakovic, 2013). By more efficiently allocating impressions
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among advertisers (or ad campaigns), DSPs can realize higher advertiser value, which in

turn enables them to charge a higher fee and attract more advertisers in a long run. For

this reason, this paper focuses on maximizing allocative efficiency in the NAS problem. In

section 6, we discuss the implications of our problem for display advertising in more detail.

Our formulation differs from most prior approaches to the advertising allocation problem

in that we follow an economic approach to model advertiser preferences rather than relying on

ad-hoc specifications. For example, in the literature review, we contrast our approach with

several existing approaches for addressing advertisers’ need for diversifying across several

audience categories. While the formulation of NAS is motivated by the problem of allocating

display advertising, it is well suited for allocation problems in sharing economy such as

traveler-room matching in vacation rental marketplace and task allocation in crowd-sourcing

labor markets (Ho and Vaughan, 2012). In these markets, the number of distinctive types of

tasks and services are high, and customers often have heterogeneous substitution preferences.

The contributions of this paper are twofold: first, we provide a theory for allocating

and pricing numerous types of goods given the heterogeneous substitution and risk-aversion

preferences. The theory addresses, for example, the existence of a price vector and a cor-

responding allocation such that all price-taking agents find their allocation optimal for the

given prices. It also provides solid foundation for the development of a fast algorithm for

solving large scale NAS problems. Second, we develop a scalable algorithm for finding an

optimal allocation of such goods in a time-constrained environment, which is particularly

important because many NAS problems require fast computation. Our simulation results

suggest that our algorithm can solve much larger problems than generic optimization algo-

rithms, and has significant advantages over existing optimization packages in terms of speed

and memory consumption.

More specifically, we have developed two key theoretical findings in this paper. The first

is the equivalence between Pareto optimality (PO) and the existence of a price vector, a

concept closely related to competitive equilibrium prices (Gul and Stacchetti, 1999). Once
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a price vector is given, one can easily obtain the corresponding Pareto-optimal allocation

by converting multiple good types into a single standard good type (a procedure we call

“standardization”), thereby dramatically reducing the dimension of the problem. Our second

key theoretical insight is the finding that at least one optimal allocation is regular, a key

new concept we introduce in response to the difficulty of directly finding the price vectors

for PO allocations suggested by the first key theoretical finding. Each regular allocation has

a pseudo price vector, one that coincides with a true price vector if the regular allocation

is also PO. Unlike true price vectors, pseudo price vectors are much easier to find. More

importantly, we also establish that at least one optimal allocation satisfies the regularity

condition, thus we may focus only on regular allocations, which is not only convenient but

also sufficient.

Based on these theoretical insights, together with a heuristic for searching the space of

regular allocations indexed by indicator matrices, we develop a new algorithm called SIMS

(Standardization-and-Indicator-Matrix-Search). The algorithm iterates among regular allo-

cation problems and solve them by the standardization technique. Our simulation results

suggest that SIMS is up to three magnitudes faster than generic convex optimization algo-

rithms.

It is interesting to note that many of our theoretical concepts and findings have parallels

in the asset pricing theory of finance, which provides guidance on how financial assets,

which yield uncertain cash flows over multiple periods, should be priced. For example, the

concept of PO is closely related to the absence of arbitrage in asset pricing. Analogous to

the equivalence between PO and the existence of a price vector, it is established in finance

the equivalence between the absence of arbitrage and the existence of a state price vector

(Ross, 1978). Furthermore, our standardization technique shares the same spirit with the

martingale methodology used for asset pricing (Harrison and Kreps, 1979; Duffie, 2001).

These theoretical parallels underscore the similarity between display advertising markets

and financial markets, which the literature has just begun to explore (Muthukrishnan, 2009;
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McAfee, 2011).6 In this sense, our theory can be viewed as the counterpart of the asset

pricing theory in the burgeoning new market for display advertising.

The SIMS algorithm we develop here is in many ways analogous to the simplex algorithm

for linear programming. For example, the indicator matrices play a role as the basic solution

in the simplex algorithm. The simplex algorithm iterates through basic solutions which

essentially correspond to vertices of a polyhedron while the SIMS algorithm iterates through

indicator matrices which essentially correspond to faces of a polyhedron. Different from the

simplex algorithm, which finds the optimal solution at vertices of the polyhedron, the SIMS

algorithm must go a step further to search the interior of a face of a polyhedron for an

optimal solution.

We organize the rest of the paper as follows: we review the related literature in Section

2 and describe our research problem in Section 3. In Sections 4 and 5, we derive the theory

and design the algorithm for NAS problem. Section 6 discusses implications of our results

for online display advertising. Section 7 concludes the paper.

2 Research Background

The problem of allocating heterogeneous goods among agents is a core problem of any ex-

change economy. Such a problem can be thought of as a transportation problem where

types of good are sources and agents are destinations.7 Below, we review the connections

between this research and the related transportation models and their applications to display

advertising.

6Practitioners seems to be ahead of the academics in terms of realizing the similarities between the two
markets. For example, a co-founder of a digital ad trading company who spent 15 years in the financial
industry commented that ”We’re talking about a market that shares a lot of the same characteristics as
financial markets” and they are “looking to apply investment banking tools and philosophies to online
advertising.” For more details, please see the following Wall Street Journal article: http://www.wsj.com/
articles/SB10001424052702303949704579459103743176792.

7Transportation problem is an important branch in the field of operations research,established several
decades ago with pioneering works by (Kantorovich, 1960; Hitchcock, 1941; Koopmans, 1949; Dantzig, 1951)
and numerous subsequent contributions (see Ahuja et al. 1993 for a comprehensive overview).
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Our work is related to a growing display advertising literature that applies transporta-

tion models to solve the problem of allocating advertising resources. The basic problem of

this literature is that given the supply of heterogeneous impressions, how to schedule the

advertisements from different ad campaigns to maximize their goals. Langheinrich et al.

(1999) was among the first to formulate display advertising as a linear transportation prob-

lem, where the goal is to allocate ads across different audience types to maximize the total

number of estimated clicks while meeting the impression goals set by ad campaigns. Such

a linear programming formulation tends to target ads on audience types where they per-

form the best, as measured by estimated click through rates. However, this also gives rise

to an “over-targeting” problem (Chickering and Heckerman, 2000; Tomlin, 2000) where the

optimal solution tends to show an ad to a narrow group of audience types. This is unde-

sirable from an advertiser’s perspective, because advertisers generally prefer to spread an

ad across multiple audience types (Nakamura and Abe, 2005). Several subsequent studies

attempt to remedy this problem by modifying the basic linear transportation problem, in-

cluding imposing minimum number of impressions per audience type (Langheinrich et al.,

1999; Nakamura and Abe, 2005) and adding a nonlinear entropy term in the objective func-

tion to force wide-spread allocation (Tomlin, 2000). More recently, Turner (2012) proposed

a quadratic objective function that aims to allocate impressions proportionally across all de-

sirable audience types. The over-targeting problem reflects advertisers’ preference for diverse

audience types (or “reach”), which in turn suggests there are diminishing returns associated

with each audience type. Instead of heuristically patching the linear transportation model,

we adopt a more theory-driven approach that directly models valuation functions with di-

minishing returns and the implied preference for diversity, using the utility function theory

from economics. As we will illustrate, our utility function approach lends to nice economic

interpretations of our findings and reveals a deep connection between the display advertising

market and the financial market. Another benefit of our approach is the added flexibility of
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allowing heterogeneous substitution preferences across advertisers. 8

To our knowledge, our transportation formulation has not been studied before. While

our approach also results in a nonlinear (concave-valuation) transportation problem, we note

that it is quite different from several other nonlinear (convex-cost) transportation problems

in the literature. One type of nonlinear transportation problem, studied in the early eco-

nomics literature, is the multi-facility production-transportation (P-T) problem (Sharp et al.,

1970; Shetty, 1959). In a P-T problem, a single type of goods is produced at and shipped

from multiple plants, and the goal is to minimize total costs, which is the sum of linear

transportation costs and convex production costs. Unlike the P-T formulation, we model

multiple types of goods. Moreover, we also develop an algorithm to solve our problem at a

very large scale.

Another related nonlinear transportation problem is the multi-commodity network flow

(MCF) problem studied in the context of telecommunication networks. This literature seeks

to optimally route multiple messages through a telecommunication network subject to con-

vex congestion costs at arcs (Ouorou et al., 2000; Babonneau and Vial, 2009). This literature

is also concerned with solving large-scale convex MCF problems (e.g., Ouorou, 2007; Babon-

neau and Vial, 2009). Our problem differs from the convex MCF problem in at least two

ways: in our problem, coupling occurs at destination nodes (via concave value functions)

rather than at arcs; the MCF problem assumes identical costs for transporting messages

while we allow agents to have different marginal values for goods. Due to these differences,

specialized solution techniques for MCF problems cannot be used for our problem.

Our problem belongs to a class of problem called nonlinear resource allocation (NRA)

problem, which, in its general form, is formulated as (see Patriksson 2008 and Katoh and

Ibaraki 1998 for a review)

min f (x1, x2, ..., xn) , s.t.
n∑

j=1

xj = b, xj ∈ [lj, uj] , ∀j = 1..n

8The entropy approach, for instance, imposes the same preference for diversity across all advertisers.
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where the goal is to allocate one type of resources of a total amount b to n activities so

that the objective value f (x1, x2, ..., xn) is minimized. NRA problems can be classified by

the type of objective functions, the type of constraints, and whether variables are integer

or continuous (Katoh 1998). An NRA problem is said to have separable objective functions

if the objective function can be written in the form of f (x1, x2, ..., xn)=
∑n

j=1 fj (xj). Prior

research has shown that the separable convex optimization with linear constraints is not NP-

hard (Chubanov, 2016; Hochbaum and Shanthikumar, 1990). In contrast, nonseparable NRA

problems are harder, and generally have no polynomial algorithms (Hochbaum, 2007). Our

problem in its original form has a nonseparable objective function, but can be converted

into a separable NRA problem by introducing additional variables and constraints. The

conversion, however, adds general linear constraints, which are not one of several special

constraint types well studied in the literature (Katoh and Ibaraki, 1998). We also note

that even in the case of separable objective functions, neither of the known polynomial

algorithms, except for a few quadratic optimization cases, is strongly polynomial (which

means the running time depends on the data coefficients rather than only on the problem

size) (Hochbaum, 2007). The existence of strongly polynomial algorithms is still an open

question.

In theory, our problem can be solved by any generic convex optimization solvers.9 Con-

temporary interior-point solvers such as LOQO (Vanderbei, 1997) and MOSEK (MOSEK,

2012) are generally quite effective at solving convex optimization programs with linear con-

straints (Bai et al., 1997; Boyd and Vandenberghe, 2004). However, when such problems

have extremely high dimensions, generic convex-optimization solvers are no longer practical,

as observed in the MCF literature (Ouorou et al., 2000). For applications such as display

advertising, we not only need to solve extremely large problems, but also need to solve them

in a timely manner, demanding specialized solution techniques for large scale problems that

9For a comprehensive review of convex optimization, see (Bazaraa et al., 2006; Boyd and Vandenberghe,
2004).
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take advantages of the special structure of our problem formulation.

This research is broadly related to a few other literature streams on display advertising,

including the ad scheduling literature and the auction literature for display advertising. The

ad scheduling literature is concerned primarily with physically fitting ads into the available

space and time. Though conceptually the ad scheduling problem is connected to the ad

allocation problem in the sense any allocation needs to be scheduled for actual display,

the ad scheduling literature has very different focus from ours. In particular, this literature

focuses more on how to fit ads of different shapes into a shared space for a given audience type

(Adler et al., 2002; Kumar et al., 2006; Deane and Agarwal, 2012), than how to optimally

match advertisements to different audience types. This literature is complementary to our

paper because it tends to consider more nuanced factors , such as exclusion clauses (Wilbur

et al., 2013), audience externalities (Wilbur et al., 2013) and re-clicking effects (Kumar et al.,

2007). A separate literature investigates the auction approach to display advertising. For

example, Lahaie et al. (2008) design an auction framework that permits flexible expression

of advertiser preferences. Chen et al. (2009) examine the issues of how to split the shares of

impressions in a multi-winner ad auction. Liu and Viswanathan (2014) study the optimal

choice of payment schedules in auctions for display advertising.

3 Problem Formulation

We assume there are M types of goods (e.g., impressions) and N agents (e.g., advertisers or

ad campaigns). We denote the set of agents by N , the set of good types (types for short)

by M. Denoting the quantity of type m allocated to agent i by xim ∈ R10, we formulate a

10The number of impressions is typically extremely large in this industry, which makes the continuous
relaxation of the decision variables less of a concern.
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nonlinear allocation problem with substitution (NAS) as:

(NAS) max{xim}
∑
i∈N

Ui (xi1, xi2, .., xim) =
∑
i∈N

Qi

(∑
m

αimxim

)
(1)

s.t.
∑
i∈N

xim ≤ ωm, ∀m ∈ M (2)

xim ≥ 0, ∀i ∈ N , m ∈ M (3)

where ωm ≥ 0 represents the total supply of type m, Ui (·) is agent i’s valuation for the

portfolio (xi1, xi2, ..., xim). The objective function of the NAS problem consists of the sum

of valuations Ui (·) of all agents. The constraints (2) and (3) represent the usual feasibility

and non-negativity requirements respectively. We call αim agent i’s valuation coefficient for

type m. We assume the valuation function Qi (·) to be continuously differentiable, strictly

increasing, and strictly concave for technical convenience.11 Our model and methods are

applicable to other families of increasing and concave value functions.12

We say type m is valuable to agent i if the valuation coefficient for this type is positive

(αim > 0). Because an agent’s valuation has a linear core, the agent considers all valuable

types as substitutes: the marginal rate of substitution is constant and is determined by the

ratio of the corresponding valuation coefficients.

Our approach to modeling agent preference is rooted in the utility function theory in

economics. Utility functions often take a concave form because of diminishing marginal

11The theory and the algorithm we will develop do not depend on the convexity assumption as long as
certain technical requirements are met to ensure global optimality.

12Another way to generalize our formulation is to allow multiple portfolios per agent in a generalized
valuation function. For example, for an agent who has 8 portfolios Si1, Si2, .., Si8, we may define her valuation
as

Ui (xi) =
8∑

l=1

Qil

( ∑
m∈Sil

αimxim

)
, ∀i ∈ N . (4)

Treating each portfolio as a separate agents, we can clearly solve the generalized allocation problem in the
same way as the original NAS problem. Because the marginal valuation for each portfolio decreases in the
quantity allocated, an agent would prefer an allocation that spreads across multiple portfolios than those
concentrate in one. In other words, such a generalized valuation function can capture the “variety-seeking”
preferences.
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Symbol Meaning
i index for agent
m index for type of good
N total number of agents
M total number of good types
N the set of agents
M the set of good types
xi = (xi1, · · · , xim, · · · , xiM) agent i’s allocation, with xim being the quantity of type m goods

allocated to agent i
x = (xT

1 , · · · ,xT
i , · · · ,xT

N)
T the N × M allocation matrix for all agents, where xi is agent i’s

allocation and T denotes matrix transpose.
αim agent i’s valuation coefficient for type m goods
ω = (ω1, · · · , ωm, · · · , ωM) total supply of each type of goods, with ωm being the total supply

of type m goods
Qi(·) agent i’s valuation function
p = (p1, p2, · · · , pM) a price vector for the M types of goods
p̃ = (p̃1, p̃2, · · · , p̃M) a pseudo price vector for the M types of goods
z = (z1, z2, · · · , zN) the allocation of standardized goods, with zi being the allocation

of standardized goods for agent i
I indicator matrix of dimension N ×M whose element Iim ∈ {0, 1}

represents whether agent i’s is allowed to have type m goods.
ω̃ the standardized supply

Q̃i(·) agent i’s valuation function in terms of standardized goods.
λm Lagrange multiplier of the supply constraint of type m good (i.e.,

its shadow price).
vi a scalar used in Example 1 as a parameter of the Qi(·) function.

Table 1: Summary of Notations

returns. When used in a stochastic environment, a concave utility function can capture

agent i’s risk aversion. Concave utility functions are widely used in insurance and finance

(e.g., Harry M. Markowitz, 1959) and have been recently proposed as an alternative to

traditional stochastic and robust programming approaches (Bai et al., 1997; Mulvey et al.,

1995; Chen et al., 2007; Ye and Yao, 2010).

For ease of reading, we list in Table 1 the main notations that will be used in the theory

development.
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4 Theory

The purpose of this section is to better understand the structure of the NAS problem which

will then be exploited to solve the problem efficiently, especially when the dimension is high.13

We prove that it is possible to break down a multi-good problem (i.e., an NAS problem with

multiple types of goods, M > 1) to a series of much simpler single-good ones (i.e., NAS

problems with only one type of good, M = 1), thus providing a foundation for an efficient

iterative algorithm.

The basic idea of our theoretical analysis is to take advantage of the correspondence

between Pareto optimality (PO)14, a necessary condition for optimality, and the existence

of a price vector, under which the PO allocation is optimal for each agent (Theorem 1).

We further show that given a price vector, we can reduce a multi-good NAS problem into

a single-good one, a technique which we call standardization (Theorem 2). Finally, (The-

orem 3) we establish that, in order to find the optimal PO allocation, it is sufficient to

search among regular allocations (Theorem 3): finding a regular allocation is much easier

than finding a PO allocation, and any regular allocation has a pseudo price vector which

also allows the standardization procedure. These results paves the way for an efficient al-

gorithm that iteratively searches among regular allocations and solve them efficiently using

the standardization technique.

To our knowledge, no prior work in the transportation literature has established similar

theoretical results for their models. However, as we will discuss, there are interesting analo-

gies between Theorem 1 and the first fundamental theorem of asset pricing, between Theorem

2 and the martingale method widely used for financial asset pricing, and between Theorem 3

and the fundamental theorem of linear programming that gives rise to the celebrated simplex

13Our NAS problem can be converted into a separable convex optimization problem with general linear
constraints, which is not NP-hard (Chubanov, 2016). However, due to the high dimensionality of the solution
space, general purpose convex optimization solvers, despite their theoretical efficiency, are not practical for
solving large-scale NAS problems, as our numerical studies will show.

14We also use PO as a shorthand for Pareto optimal.
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method.

We develop these theoretical results in five subsections, starting from the concept of an

indicator matrix which we use to denote a family of allocations . All proofs are available in

the online appendix.

4.1 Graph Representation and Indicator Matrix

As with other transportation problems, our problem can also be represented in a graph where

source nodes are good types, destination nodes are agents, and there is an arc connecting

every source and destination pair. Thus, our problem is also a network flow problem with

the goal of figuring out the optimal flow on each arc.

Instead of allowing flows from every source to every destination, it is useful to study a

restricted problem where only a subset of flows are permitted. The permitted flows can be

represented by an N ×M indicator matrix I, whose element Iim ∈ {0, 1} represents whether

a flow is allowed from source (type) i to destination (agent) m, that is:

Iim = 0 ⇒ xim = 0, ∀i,m

We can define a NAS problem restricted by indicator matrix I as:

(RNAS) max
{xim}

∑
i∈N

Qi

(∑
m

αimxim

)

s.t.
∑
i∈N

xim ≤ ωm, ∀m ∈ M (5)

xim ≥ 0,∀i ∈ N , m ∈ M (6)

xim = 0, ∀i ∈ N ,m ∈ M, Iim = 0 (7)

The last condition requires the allocation matrix x to have positive values only at places

where the indicator matrix I has “1”. The three conditions collectively define the set of
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feasible allocations for the restricted problem.

We use the following example throughout the paper.

Example 1. Consider the following 4 × 4 example with supply vector ω = (12, 8, 6, 6) and

exponential valuation functions15

Qi (xi) = vi

(
1− e−

∑4
m=1 αimxim

)
, i = 1, 2, 3, 4

where the parameters vi and the valuation coefficients αim are given by:

v =



2

1

1.5

1.2


, α =



0.3 0.16 0.1 0.2

0.2 0.5 0.12 0.05

0.13 0.1 0.4 0.08

0.06 0.1 0.2 0.3


.

We consider three indicator matrices for this problem:

I∗ =



1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1


, I1 =



1 1 0 0

0 1 0 0

1 0 1 0

0 1 0 1


, I2 =



1 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1


.

An NAS problem restricted by I∗ would allow agents 1 to 4 to have types {1}, {2}, {1, 3},

and {2, 4} respectively. I1 additionally allows agent 1 to have type 2. I2 additionally allows

agent 3 to have type 4.

We are interested in restricted problems that contain the solution to the original NAS

problem. We call such an indicator matrix an optimal indicator matrix. By definition,

15The exponential valuation function is commonly used in economics and finance to capture an economic
agent’s aversion to variation in consumption levels and the agent’s decreasing marginal utility from con-
sumption.
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an indicator matrix of all 1’s is always optimal. We are interested in non-trivial optimal

indicator matrices with fewer 1’s.

4.2 Pareto Optimality and Price Vector

Apparently, for an allocation to be optimal, it is necessarily Pareto optimal (PO), which

means that one cannot make some agents better off without hurting others through a real-

location of goods (i.e., no Pareto improvement). Appendix A.3 provides a formal definition

of PO. We say an indicator matrix I is PO if all feasible allocations in the NAS problem

restricted by I are PO.

The second welfare theorem of economics establishes that there is a correspondence be-

tween PO allocation and the existence of a set of competitive equilibrium prices such that

all price-taking agents would prefer this allocation to any other affordable allocation. We

next show that a similar insight holds for our problem. We first introduce the concept of a

price vector and then show that the existence of a price vector is equivalent to PO.

Definition 1. (Price Vector) A strictly positive vector p = (p1, p2, ..., pM) is called a price

vector for (an NAS problem restricted by) an indicator matrix I if

αim

αin

≥ pm
pn

, ∀i ∈ N ,m, n ∈ M, such that Iim = 1 (8)

The price vector captures the idea of “equilibrium” prices in a competitive market such

that if the goods were to be traded at these prices, no agent would find it profitable to do so.

Condition (8) says that agent i can have type m (Iim = 1) only if her valuation for type m

relative to any other type (αim/αin) is at least as high as the price for type m relative to any

other type (pm/pn). In other words, if there were a decentralized market where the posted

prices were p, the agent would not gain by trading her current allocation for another.

Because re-scaling of p would not affect condition (8), the price vector as defined above,

if it exists, is clearly not unique. From now on, we say that a restricted NAS problem has a
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unique price vector if all of its price vectors are proportional to each other.

The following example shows that a price vector may not exist or be unique for an arbi-

trary restricted problem.

Example 2. Continuing with Example 1, it can be verified that, in the case of I∗, any vector

p = (13, b, 40, 3b) with 10 ≤ b ≤ 20 satisfies (8). Hence, the price vector for I∗ is not unique.

I1 has a unique price vector p = (3.9, 2.08, 12, 6.24) One can also prove that, in the case of

I2, condition (8) cannot be met, so there is no price vector for I2.16

Theorem 1 below establishes the correspondence between PO and the existence of a price

vector.

Theorem 1. An indicator matrix I is Pareto optimal if and only if there exists a price vector

for I.

The proof of Theorem 1 is technically involved and we refer interested readers to Appendix

A.1 to A.4. We briefly explain the intuition for the proof here. We first establish that PO

is equivalent to the absence of any “profitable” trading cycle where each person in a circle

gives one type of her goods to the next person. In the simplest setting with two agents, 1

and 2, and two types of goods, A and B, any exchange is a trading cycle: for example, agent

1 may exchange 1 unit of type A with agent 2 for x units of type B. The existence of a price

vector (plus the fact that agents 1 has A and agent 2 has B) implies that α1A

α1B
≥ pA

pB
≥ α2A

α2B
.

So if agent 1 finds the exchange profitable (which requires x > α1A

α1B
), then agent 2 must

not find it profitable (which requires x < α2A

α2B
), and vice versa. Hence, there cannot be a

Pareto improvement trading cycle in this setting. Conversely, if the allocation is PO, we

infer that α1A

α1A
≥ α2A

α2B
, thus we can always find a price vector that satisfies the condition

α1A

α1B
≥ pA

pB
≥ α2A

α2B
. Our proof generalizes the basic idea in this simple case to any number of

agents and any number of good types.

16In the case of I1, the 1’s in rows 1,3, and 4 imply that p1

p2
= 0.3

0.16 ,
p1

p3
= 0.13

0.4 , p2

p4
= 0.1

0.3 , which together

yield a unique solution to p (up to a scaling factor). In the case I2, row 3 additionally implies p1

p4
= 0.13

0.08 ,
which contradicts the existing conditions, thus a price vector does not exist.
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It is interesting to note that Theorem 1 has a counterpart in the asset pricing theory,

namely, the first fundamental theorem of asset pricing which states that a financial market

is free of arbitrage if and only if there exists a state-price vector. The analogy has its root

in the connection between PO and absence of arbitrage.

4.3 Price Vector and Standardization

Knowing the price vector is extremely valuable because it allows us to convert multiple types

into a standard type, thus dramatically reducing the dimension of the problem, as we show

in the next Theorem.

Theorem 2. (Standardization) Let I be a Pareto-optimal indicator matrix and p be an

associated price vector. Define the supply ω̃ and valuation functions Q̃i(·), i ∈ N , for the

“standard” good as:17

ω̃ ≡
∑
m∈M

ωmpm (9)

Q̃i (zi) ≡


Qi

(
αim

pm
zi

)
, ∀i such that Iim = 1 for some m

0, otherwise

(10)

Let z∗ be the solution to the following standardized single-good NAS problem

(single-type NAS) max{zi}
∑
i∈N

Q̃i (zi) (11)

s.t.
∑
i∈N

zi ≤ ω̃

zi ≥ 0,∀i ∈ N

17Note that Q̃i(·) is well-defined because for any agent i, when there are multiple m such that Iim = 1, we

can use any m to define Q̃i(·) because the ratio αim/pm will be same for all different m by (8).
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and x be an allocation restricted by I that satisfies the following system of linear equations:18


∑

m∈M,Iim=1 pmxim = z∗i , ∀i ∈ N∑
i∈N ,Iim=1 xim = ωm, ∀m ∈ M

. (12)

The allocation x is a solution to the original NAS problem if it is non-negative.

Theorem 2 suggests that given a price vector, we can convert multiple good types into a

standard good type. In this standardized economy, the total supply of standard goods is the

sum of all original goods weighted by their prices (equation (9)) and the valuation coefficients

of standard goods are valuation coefficients of the goods divided by their prices (equation

10). The system of linear equations (12) allows us to recover an allocation of goods from an

optimal allocation of standard goods. More importantly, if both I and the associated price

vector are chosen “correctly”, the allocation x recovered from the standardized problem is a

solution to the original NAS problem.

In the proof of Theorem 2 (Appendix A.5), we show that if a PO indicator matrix I

and the associated price vector p are “correct”, then p is proportional to the competitive

equilibrium prices19 , and the scaling factor is exactly the Lagrange multiplier for the supply

constraint in the standardized problem. Thus, an appropriately scaled price vector for an

optimal indicator matrix can also be interpreted as the equilibrium prices in a competitive

market.

It is also interesting to notice the connection between our standardization technique and

martingale pricing method which has become the workhorse in the financial industry over

the last few decades. To see this, we need to interpret the space of impression types as the

sample space (Ω) in a probability space and the supply of numerous types of impressions as

18It should be noted that the existence of a solution to the system of linear equations (12) is guaranteed
by a technical result (Lemma 5) in the appendix.

19A competitive equilibrium consists of a price vector and an allocation such that every agent prefers her
current bundle to any other affordable bundle.
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an asset with uncertain values depending on the realized outcome in the sample space. The

price vector in our standardization theorem, once normalized, essentially defines a martingale

probability measure (P) under which the “standardized” supply is the expected supply (ω̃ =

EP[ω]). More importantly, under this probability measure P, the value of a portfolio is

completely determined by its expectation under P and agents care only about their expected

allocations. Hence, we only need to allocate goods among agents based on the expected

supply and later constructs the actual allocation that is consistent with the expected values

and the supply constraints by solving a system of linear equations.

Being able to reduce a multi-good problem to a single-good one is a significant advantage,

especially for a large-scale problem with numerous types of goods. Theorem 2 suggests the

following iterative procedure for solving an NAS problem.

• First, we identify a PO indicator matrix I and obtain a price vector.

• Second, we use the price vector to standardize the goods according to (9).

• Third, we solve the standardized single-good NAS problem, which can be done rela-

tively easily.

• Fourth, we obtain a candidate allocation for the original problem by solving the system

of linear equations (12).

• Finally, we test the optimality of the candidate allocation and if it is not optimal, we

find another Pareto-optimal indicator matrix and start from step 1.

However, there are still several practical challenges. First, it is unclear how to find the first

Pareto-optimal indicator matrix and, if the current one does not produce the solution to

the NAS problem, how to find the next one. Though we have provided a condition for PO

in Lemma 3 of Appendix A.3, directly verifying PO is far from trivial. Second, deriving

a price vector from a known Pareto-optimal indicator matrix is not straightforward either,

even for simple cases such as Example 2. We address these challenges in two steps: first,
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we introduce a new concept called regularity, which overlaps with PO but is much more

computation-friendly; second, we introduce a heuristic matrix search algorithm in Section 5

for navigating in the space of regular indicator matrices. The regularity condition is built

upon the notion of connectivity between good types, which we discuss before the concept of

regularity.

4.4 Connectivity Between Types of Goods

As we have mentioned before, an indicator matrix can be alternatively thought of as de-

scribing a network of agents and good types. Types of goods are indirectly connected by

agents who are linked to them. Using this notion of connectivity, we can define a connected

indicator matrix .

Definition 2. (Connected Types) In an indicator matrix I, types m and n are connected

via agent i, denoted as m
i↔ n, if the agent can have both m and n, i.e., Iim = Iin = 1.

Based on this notion of connectivity, we can define a graph G for each indicator matrix

I using types as nodes and connecting agents as labels. Figure 1 illustrates the connectivity

graphs associated with I∗, I1, and I2 respectively.
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(c) I2

Figure 1: Connectivity graphs corresponding to I∗, I1 and I2

Definition 3. (Connected Indicator Matrix) An indicator matrix I is connected if its

graph is connected.

In Example 1, I1 and I2 are connected but I∗ is not. When an indicator matrix I is

disconnected, its graph can be decomposed into several connected components. We call
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the set of nodes in each connected component of the graph a connected component of the

indicator matrix I.

Recall that a Pareto-optimal indicator matrix must have a price vector, but as we state

earlier, the price vector needs not be unique. It turns out that when a Pareto-optimal

indicator matrix is connected, the price vector must be unique (that is, up to a scaling

factor).

Proposition 1. If a connected indicator matrix I is Pareto optimal, then the price vector

for I is unique.

The intuition for this result is as follows. Whenever an agent owns two types of goods,

the price ratio between these goods will be determined by the agent’s marginal valuations

for them. A connected indicator matrix implies that all goods types are directly or indirectly

connected, and therefore their price ratio are also determined.

As illustrated in Example 2, with each component of I∗ having its own price vector and

scaling factor (i.e., 1 and b respectively for the two components in the example) at the

component level, the price vector for the entire indicator matrix I∗ becomes non-unique.

4.5 Regularity

Recall that when two good types are connected by an agent, their price ratio is determined

by the marginal valuations of that agent. What if two good types are connected by multiple

agents? It turns out that it implies either sub-optimality or alternate solutions. Regularity

rules out such conditions, and yields enormous benefits for computation.

To motivate the concept of regularity, we first consider a simple example.

Example 3. Consider an example with two agents and two types of goods. Let

U1 (x1) = Q1 (x11 + x12) , U2 (x2) = Q2 (x21 + βx22) .
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Consider five connected indicator matrices

Ia =

 1 1

1 1

 , Ib =

 1 1

1 0

 , Ic =

 0 1

1 1

 , Id =

 1 1

0 1

 , Ie =

 1 0

1 1

 .

Based on valuation coefficients, agent 1 is indifferent between the two types. Depending on

the value of β, agent 2 may prefer one type to the other type or be indifferent between them.

• If β < 1, agent 2 prefers type 1 to type 2. Hence, agent 2 would be better off trading

type-2 good for type-1 good with agent 1 until agent 2 runs out of type 2 (corresponds

to Ib) or agent 1 runs out of type 1 (corresponds to Ic). Since agent 1 is not worse off

from this trade, Ia is Pareto dominated by Ib or Ic

• If β > 1, by symmetry, Ia is Pareto dominated by Id or Ie.

• If β = 1, both agents are indifferent between the two types, so we can let one agent

trades one of her types for another until one of the agents runs out one good type

(corresponds to Ib, Ic, Id, or Ie), without affecting any agent’s valuation. In other

words, Ia is redundant for the purpose of finding an optimal indicator matrix.

Therefore, regardless of the value of β, excluding Ia, does not sacrifice optimality: for the

purpose of finding optimal allocations, we can focus on Ib through Ie. We note that in Ia, the

two types of goods are connected by two different agents, whereas in Ib through Ie, each is

connected by a single agent. We generalize this important insight by introducing the concept

of regularity in the following steps.

Definition 4. (Regular Connection) Given an indicator matrix I, a type m has a regular

connection with a connected component S (m /∈ S) if (a) m is connected to at least one

element of S and (b) all of m’s connections to S are via the same agent.

This generalizes the notion of “connected by a single agent” to one type against a com-

ponent of types.
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Definition 5. (Regular Connected Component) A connected component is regular, if

each type has a regular connection with each of the connected components formed by the

remaining types in this component, after removal of this type.

Definition 6. (Regular Indicator Matrix) An indicator matrix I is regular if all of its

connected components are regular.

By definition, to check for regularity, we only need to ensure the regularity of each

connected component of an indicator matrix . For a connected component to be regular,

each type in the component must connect to each connected component of the remaining

types via a single agent (but connections to different components of the remaining types

need not be through the same agent). In the examples in Figure 1, I∗ and I1 are regular but

I2 is not because, for instance, type 4 is connected to component {1, 2, 3} via both agent 3

and agent 4.

We next show that a regular and connected indicator matrix produces a pseudo price

vector that is closely related to the true price vector.

Proposition 2. Let I be a connected and regular indicator matrix. Then (a) there exists a

vector p̃ = (p̃1, p̃2, · · · , p̃M), called a pseudo price vector, such that for any two connected

types m
i↔ n,

p̃m
p̃n

=
αim

αin

. (13)

(b) The pseudo price vector is unique (in the same sense as a “unique” price vector). (c) If

I is also Pareto optimal, then the pseudo price vector is the unique price vector for I.

The results in Proposition 2 is quite intuitive. Because the regularity and connectivity

conditions ensure that any pair of goods types are connected via a single chain of agents,

the pseudo price vector as determined by connecting agents’ marginal valuations is unique.

The vector as defined by equation (13) is “pseudo” because the regularity connection

only speaks about the connectivity, not whether there can be Pareto improvement among

23



connected agents. Proposition 2 suggests that the pseudo price ratio becomes a true price

vector (and a unique one) when I is not only connected and regular, but also PO.

The pseudo price vector derived from condition (13) is extremely easy to compute and

is a natural candidate for the price vector. To focus the search among regular indicator

matrices, we must ensure that an optimal allocation resides among regular allocations. Our

next result guarantees this.

Theorem 3. (Regularity) If a Pareto-optimal allocation x is not regular, then there exists

a regular Pareto-optimal allocation x′ such that all agents are indifferent between x and x′.

The intuition behind this important theorem can be seen from Example 3. The basic idea

is that if a Pareto-optimal allocation allows multiple connecting agents (thus not regular), we

can initiate exchanges among these agents without hurting any agent until some agents run

out of their allocated goods. This can go on until we reach a regular and still PO allocation.

Since each Pareto-optimal allocation must have an equivalent regular allocation (Theorem

3), it is sufficient to search among regular indicator matrices. Figure 2 illustrates the relations

among three key concepts in this section: optimality, Pareto optimality, and regularity.

It is interesting to note that Theorem 3 plays a similar role in solving NAS as the

fundamental theorem of linear programming does in solving linear programming problems.

The fundamental theorem of linear programming guarantees the existence of a basic optimal

solution, if an optimal solution exists. Analogously, Theorem 3 ensures that there must exist

a regular optimal allocation.

The following result further shows the practical importance of the concept of regularity

for the algorithm design. The proof is available in Appendix A.6.

Proposition 3. If the indicator matrix I is regular, then there exists a unique solution to

the system of linear equations defined by (12), where the price vector p is replaced by p̃, a

pseudo price vector for I.
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Figure 2: P is the set of allocations that are PO and R is the set of allocations that are
regular. At least one optimal allocation resides in ∆ = P ∩R.

5 The SIMS Algorithm

Based on the theoretical results in Section 4, we develop the SIMS (Standardization-and-

Indicator-Matrix-Search) algorithm which has two major components: the standardization

component that solves an RNAS problem given a regular indicator matrix, and the indicator-

matrix-search component that suggests an alternative regular indicator matrix if the current

one turns out to be not optimal. Next we describe each component in details.

5.1 The Standardization Procedure

Given our results on regularity (Theorem 3), the five-step procedure suggested by Theorem

2 can be implemented using regular indicator matrices instead.

Results on connectivity and regularity suggest we can decompose a regular indicator

matrix into connected components. Suppose a regular indicator matrix I has J components.

We denote Mj as the set of types of goods within the jth component, Nj as the set of

affiliated agents (i.e., who are allowed to have at least one type in Mj), and Ij as the

submatrix of I corresponding to the jth component. We define a sub-problem as allocating

goods of types in Mj among agents in Nj restricted by indicator matrix Ij.

Because the indicator matrix Ij for each sub-problem is connected and regular, we can

calculate the pseudo price vector and use that in place of the price vector in the standard-

ization procedure. Once we have the solutions of all sub-problems, we have a candidate
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solution to the full original NAS problem, because the allocation for each good type (or

agent) is determined by the sub-problem where it belongs. To illustrate this, we continue

with Example 1 and solve the NAS problem restricted by I∗.

Example 4. Continue with Example 1 restricted by I∗. We can rearrange the rows (agents)

and columns (goods) of I∗ as

1 3 2 4

1

3

2

4



1 0 0 0

1 1 0 0

0 0 1 0

0 0 1 1


(14)

With the rearrangement, it becomes clear the matrix has two disconnected components: the

first component consists of agents {1, 3} and types {1, 3} and the second one consists of

agents {2, 4} and types {2, 4}. As the first step, we decompose I∗ into two sub-matrices I∗1

(the top-left component in (14)) and I∗2 (the bottom-right component). As the second step,

we standardize each sub-problem. Take I∗2 as an example. Noting that types 2 and 4 are

connected via agent 4, we calculate the pseudo price vector as ( p2, p4 ) = (1, 3) because

α42/α44 = 1/3. The standardized supply is ω̃ = 8p2+6p4 = 26 and the standardized valuation

functions are

Q̃2(z2) = 1− e−0.5z2 , Q̃4(z4) = 1.2
(
1− e−0.1z4

)
.

The optimal solution for the standardized problem is z∗2 = 6.7119, z∗4 = 19.2881. By (12), we

solve the following linear equations


1 0 0

0 1 3

1 1 0




x22

x42

x44

 =


6.7119

19.2881

8


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and obtain a solution to the second sub-problem

 x22 x24

x42 x44

 =

 6.7119 0

1.2881 6

 .

A similar procedure yields a solution to the first sub-problem

 x11 x13

x31 x33

 =

 11.823 0

0.177 6

 .

Putting together the solutions to the two sub-problems, we obtain the following candidate

solution,

x =



11.823 0 0 0

0 6.7119 0 0

0.177 0 6 0

0 1.2881 0 6


.

Given a candidate solution, it is straightforward to check its optimality using the following

result.

Proposition 4. Let x be the candidate solution assembled from the solutions to the J sub-

problems and λm be the Lagrange multiplier (or shadow price) for type m. x is the solution

to the NAS problem if x is non-negative and

premiumim ≡ ∂Qi

∂xim

/λm − 1 ≤ 0, ∀m ∈ Mj, i /∈ Nj. (15)

where premiumim is termed as the value premium of agent i for goods m.

Intuitively, condition (15) ensures that an agent would not prefer goods from a different

component. The value premium captures the extent to which an agent values a type m above

its shadow price λm. At an optimal allocation, no agent should have a positive value premium

for any type, particularly for types from a different component. This makes intuitive sense
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because otherwise, we should allocate more to this user until her marginal valuation equals

the shadow price.

To check whether the candidate solution from Example 4 is optimal, we compute the

marginal valuation matrix Q′(x) as

Q′(x) =



∂Q1

∂x11

∂Q1

∂x12

∂Q1

∂x13

∂Q1

∂x14

∂Q2

∂x21

∂Q2

∂x22

∂Q2

∂x23

∂Q2

∂x24

∂Q3

∂x31

∂Q3

∂x32

∂Q3

∂x33

∂Q3

∂x34

∂Q4

∂x41

∂Q4

∂x42

∂Q4

∂x43

∂Q4

∂x44


=



0.017288 0.0092202 0.0057626 0.011525

0.0069754 0.017438 0.0041852 0.0017438

0.017288 0.013298 0.053193 0.010639

0.010463 0.017438 0.034877 0.052315


.

where the bold-faced elements are Lagrange multipliers λ. Noticing that x is non-negative

and there is no positive value premium, we conclude that x is an optimal allocation.

5.2 The Indicator-Matrix-Search Heuristic

The indicator-matrix-search component of SIMS is conceptually independent of the stan-

dardization component because its main purpose is to navigate the space of regular indicator

matrices to reach an optimal one as fast as possible. We propose a heuristic search algorithm

and then implement and test it in the numerical studies. We first briefly describe the basic

idea of this heuristic and illustrate it using a worked-out example. Additional details of the

search heuristic is available in online Appendix B.

We choose the initial indicator matrix I0 by naively assigning goods to the agent with

the highest marginal valuation (breaking ties randomly) subject to a quota of M/N for each

agent:

Iim =


1 if i = argmaxk

∂Qk(0)
∂xkm

0 otherwise

. (16)

Because each type can be held only by one agent, I0 is clearly regular. Step 2 (graph

decomposition) can be easily achieved by, for example, a depth-first search algorithm.
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k Ik xk Q′ (xk
)

0

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

12 0 0 6
0 8 0 0
0 0 6 0
0 0 0 0

0.0049378 0.0026335 0.0016459 0.0032919
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.072000 0.12000 0.24000 0.36000

1

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

12 0 0 −3.3893
0 8 0 0
0 0 6 0
0 0 0 9.3893

0.032291 0.017222 0.010764 0.021527
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.0043055 0.0071758 0.014352 0.021527

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

12 0 0 0
0 8 0 0
0 0 6 0
0 0 0 6

0.016394 0.0087436 0.0054647 0.010929
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.011902 0.019836 0.039672 0.059508

3

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

12 0 0 0
0 6.7119 0 0
0 0 6 0
0 1.2881 0 6

0.016394 0.0087436 0.0054647 0.010929
0.0069754 0.017438 0.0041852 0.0017438
0.017690 0.013608 0.054431 0.010886
0.010463 0.017438 0.034877 0.052315

4

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

11.823 0 0 0
0 6.7119 0 0

0.177 0 6 0
0 1.2881 0 6

0.017288 0.0092202 0.0057626 0.011525
0.0069754 0.017438 0.0041852 0.0017438
0.017288 0.013298 0.053193 0.010639
0.010463 0.017438 0.034877 0.052315

Table 2: An Illustration of the SIMS Algorithm

How to best select the next I is where we use heuristics. Our proposed heuristic crucially

relies on the comparison of value premiums which we defined in Proposition 4.

Each time we have a candidate solution, we first check whether there is any negative

element in the allocation matrix. For each negative xim (suggesting agent i has low valuation

for type m), we adjust I by setting Iim = 0 and solve the restricted problem again with the

new I. If the new candidate solution is non-negative, we adjust I by setting Iim = 1 where the

highest positive value premium is (suggesting the agent has an “above-market” valuation,

thus should be allocated more) and solve the restricted problem again.

Example 5. We illustrate the matrix searching heuristic of SIMS using Example 1. Table

2 provides the outputs of each iteration.

1. Set the initial indicator matrix I0 according to (16). By solving the problem restricted

by I0 as in Example 4, we obtain x0 and Q′ (x0) as shown in the first row of Table 2.
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According to Proposition 4, because some elements of Q′(x0) exceed the corresponding

λm (shown in bold in the same column), x0 is not optimal. The highest premium is

premium44 =
0.36000

0.0032919
− 1 = 108.36. So we set I44 = 1 and obtain I1.

2. Solve the problem restricted by I1 and obtain x1 and Q′ (x1). Noting x14 < 0, we set

I14 = 0 and obtain I2.

3. Solve the problem restricted by I2. The highest premium is premium42 =
0.019836
0.0091578

−1 =

1.166. So we set I42 = 1 and obtain I3.

4. Solve the problem restricted by I3. The highest premium is premium31 =
0.01769
0.016394

−1 =

0.08. So we set I31 = 1 to obtain I4.

5. Solve the problem restricted by I4. Because x4 is non-negative and there is no positive

premium, x4 is optimal and we are done.

Interestingly, in many ways, the SIMS algorithm parallels the simplex algorithm. Indicator

matrix in SIMS plays the similar role as the basis in the Simplex method. Each iteration of

the Simplex algorithm lets one variable enter the basis and one variable leave the basis while

maintaining independence of the basic variables. This is analogous to iterating the indicator

matrix by switching one element from 0 to 1 and another from 1 to 0 while maintaining its

regularity. In the Simplex method, the variable with the largest (positive) coefficient in the

objective function is chosen to enter the basis. Analogously, we choose an element with the

highest value premium to switch from 0 to 1.

Geometrically, the Simplex algorithm searches over the vertices of the feasible convex

polyhedron and each iteration pivots from one vertex to an adjacent vertex of the polyhedron.

The SIMS algorithm operates in a similar fashion, but instead of searching over vertices, it

searches over faces of the feasible convex polyhedron and each iteration slides from one face

to an adjacent face of the polyhedron. Such a difference is rooted in the different structures

of the objective functions. For a linear programming problem, the objective function is linear
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and there always exists a solution at one of the vertices of the convex polyhedron. In our

case, the objective function is convex (if formulated as a minimization problem), hence, the

set of optimal solutions and the set of vertices do not intersect in general. Nevertheless,

Theorem 3 ensures that there always exists a solution at one of the faces characterized by

a regular indicator matrix. In this sense, a regular face is the counterpart of a vertex in a

linear programming problem.

The following procedure summarizes the SIMS algorithm.

1. Find an initial regular indicator matrix I.

2. Construct the graph for I and decompose it into several connected components.

3. For each connected component, construct and solve a sub-problem by

(a) computing the unique pseudo price vector,

(b) solving the standardized problem, and

(c) recovering the solution for the sub-problem using (12).

4. Combine solutions to sub-problems to form a candidate solution for the whole NAS

problem.

5. Check whether the candidate solution satisfies (i) x ≥ 0 and (ii) premiumim ≤ 0,∀i,m.

(a) If yes, then we have found an optimal allocation.

(b) If no, choose another regular I and go back to Step 2.

Algorithm 1: The Standardization and Indicator Matrix Search (SIMS) Algorithm

5.3 Numerical Studies

We use three sets of numerical simulations to study the performance of the SIMS algorithm.

In the first set of simulations, we are mainly interested in the convergence behavior and
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scalability of SIMS. In the second set of simulations, we compare SIMS to generic convex

optimization solvers. In the third set, we conduct a more realistic simulation of display

advertising problem, and demonstrates the applicability of SIMS for this problem.

5.3.1 Performance and Scalability

In the first set of simulations, each agent’s valuation function takes an exponential form

which we have used in earlier examples. The coefficient vi are independently drawn from the

uniform distribution in the interval [1000, 10000] and the coefficients of αij are independently

drawn from the uniform distribution in the interval [0.1, 1.1]. The supply of each type of

good is randomly generated according to a binomial distribution with 10 trials and a success

probability of 0.4.

We first show that SIMS can effectively solve large-scale NAS problems and demonstrate

its fast convergence. Thanks to the form of the valuation functions, we can obtain a strict

upper bound for the objective20, which is useful for studying the convergence behavior of

SIMS. We fix the number of agents to N = 1, 000 and gradually increase the number of

types from M = 5, 000 to M = 50, 000. Because an increase in M naturally makes the

allocation problem “easier” to solve due to the increase of supply, we scale down the supply

vector proportionally as we scale up the value of M . This makes the convergence processes

corresponding to different values of M more comparable. For all these examples, the strict

upper bounds of objective values are in the interval of [5824870.03, 6180232.48]. Figure 3

plots the simulation results. The plot on the left shows the objective value at each iteration

for M = 10, 000, which quickly approaches the upper bound. This suggests that SIMS can

find an approximately optimal allocation within a few hundred iterations, which is highly

valuable for practical purposes. The plot on the right further characterizes the convergence

behavior of SIMS in terms of the number of iterations it takes to converge to 99.9999999%

20Because Qi(xi) = vi(1 − e−ΣM
m=1αimxim), one theoretical upper bound for the objective function is

Q̄ ≡ ΣN
i=1vi.
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Figure 3: Convergence of SIMS

of the upper bound of the objective, and the average number of seconds it takes to complete

one iteration. It might seem surprising that the number of iterations required to obtain an

approximately optimal solution decreases as we increase M . This phenomenon is driven by

two factors. First, a larger value of M implies more optimal regular indicator matrices, hence

more paths to optimality; Second, the initial indicator matrix we choose is more refined when

M is larger. Due to these two countervailing forces, the total amount of time does not change

dramatically as we increase M . These numerical results suggest that SIMS is quite scalable.

5.3.2 Performance Benchmark

Given that our problem is a convex optimization problem, it is useful to compare the speed

of SIMS with a generic convex optimization solver. We choose three popular convex opti-

mization packages: MOSEK, CVXOPT, and LOQO. MOSEK is a well-known commercial

software for solving large-scale mathematical optimization problem using the interior-point

method. A recent survey compares MOSEK favorably to CPLEX, another leading commer-

cial software for convex optimization Ben-Tal and Nemirovski (2001). CVXOPT is a free

python-based convex optimization software developed at UCLA, and LOQO is a commercial

optimization software developed at Princeton University for smooth constrained optimization

based on an infeasible, primal-dual, interior-point method.
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We note that the interior-point method used by most commercial software requires the

construction of the Hessian matrix during each iteration, which has a memory requirement

in the order of O
(
(NM)2

)
. In contrast, the memory requirement for SIMS is in the order

of O(NM) because all relevant variables during each iteration have the same dimension as

the allocation matrix, which is N ×M . This implies commercial software such as MOSEK

will have troubling fitting an exceedingly large problem into the memory. For this reason,

we cap the problem size for MOSEK at N = 100 and M = 5000 so that it can finish within

reasonable amount of time and the memory requirement.

We first compare the speed of MOSEK and SIMS by setting N = 100 and let M vary

from 500 to 5000. The left panel of Figure 4 compares the time used by each software.

Clearly, SIMS outperforms MOSEK when the scale of the problem is large. To compare

the performance of SIMS with CVXOPT and LOQO, we further reduce the scale of NAS

problems so that CVXOPT and LOQO can run properly. In particular, we set the number

of agents to N = 50 and increase M from 50 to 100 at a step of 1. The right panel of Figure

4 compares the time used by each software. Clearly, the performance of SIMS is far superior

to CVXOPT and LOQO.
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Figure 4: Comparison of SIMS with MOSEK (left panel), and with CVXOPT and LOQO

(right panel). The number of advertisers is fixed to 100 in the left panel and 50 in the right

panel.
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Based on these numerical experiments, we believe that SIMS has significant advantages

in speed and memory requirement that make it particularly useful for solving extremely

large-scale and/or time-critical problems: First, speed comparisons in Figure 4 suggest that

for problems of large sizes, it would often take the standard algorithm hours to solve while it

only takes SIMS a few seconds to solve. Second, because the memory requirement in SIMS

is O(NM) compared with O
(
(NM)2

)
for most generic interior-point solvers, SIMS can solve

much larger problems on commodity hardware, which by itself can justify the use of SIMS

over generic convex optimization solvers.

5.3.3 Application to Display Advertising

To validate the applicability of the SIMS algorithm in real-world problems, we simulate a

display advertising problem and use SIMS to solve them. Simulation methods have been

used to test other algorithms for display advertising (Turner, 2012; Deza et al., 2015). In

display advertising, we re-interpret “agents” as ad campaigns to reflect the fact that each

campaign has its own goals and preferences. Following Zhang et al. (2014), we assume that

the each ad impression is characterized by K binary features (e.g., male/female, day/night,

high income/low income, etc), resulting in 2K total impression types. We also assume each

campaign may target a small subset set of impression types, and different campaigns may

use different features for targeting (e.g. one campaign may target gender while another

may target income level). We discuss how we simulate supplies, targeting criteria for each

campaign, and valuation coefficients below.

First, we let the number of featuresK = 14, resulting in 16, 384 distinct impression types.

Following Turner (2012), we use Pareto distribution to account for the fact that supplies are

disproportionately large for some impression types. Specifically, for each impression feature,

we draw two numbers, p0 and p1, from a Pareto distribution with minimum 0, mean 1,

and shape parameter 5. We then let q1 = p1
p1+p0

be the probability of getting 1’s for this

feature, and q0 = 1− q1 for getting 0’s. We further assume that the probability of drawing
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an impression type with feature vector f = (f1, f2, ..., fK) is P (f) = q1f1q
2
f2
...qKfK , where qkfk

is the probability of drawing fk ∈ {0, 1} for feature k. We conduct random draws according

to P (f) to obtain the total supply of impression types.

Second, to simulate campaign targeting, we first draw a number k1 from a Poisson distri-

bution with parameter 2 to be the number of targeted features. We then randomly choose

k1 features out of K as targeted features. For each targeted feature k, we let the targeting

criterion be fk = 1 with probability qk1 , and fk = 0 with probability qk0 .

Finally, after simulating the targeting criteria for each campaign, we simulate the val-

uation coefficients for those targeted impression types. Assuming an exponential valuation

function with parameters {vi} and {αim}, we randomly generate {αim} for targeted impres-

sion types using a truncated normal distribution with mean 0.5, standard deviation 0.2,

and min/max of 0.1 and 1 respectively. The coefficients are then scaled by a factor of 0.01

to make the optimization problem difficult enough21. Furthermore, to mimic the fact that

campaigns have different budget levels, we simulate the coefficients {vi} by drawing from a

truncated normal distribution with mean 0.5, standard deviation 0.2, and min/max of 0.1

and 1 respectively, and then scaling it by a factor of 10,000 to reduce floating-point numeri-

cal error although mathematically the scaled problem is essentially equivalent to the original

one.

An upper bound of the NAS problem corresponding to this simulated real-world example

is 5026061.52. SIMS solved this NAS problem in 446.945 seconds (roughly 7.5 minutes) with

objective 5026061.519957. On the other hand, MOSEK failed to solve the problem within

100,000 iterations after 944904 seconds (roughly 11 days). The comparison suggests that the

advantage of SIMS over MOSEK is enormous in more realistic scenarios.

21To see this, imagine the extreme case when the coefficients αij are extremely large. A trivial optimal
allocation is to allocate enough supply to each campaign one by one so that its valuation approximates the
upper bound (i.e., vi). In general, the difficulty level of the problem increases with the scale of supply and
the scale of the coefficients.
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6 Implications for Online Display Advertising

By solving the NAS problem, we can obtain several types of outputs: the price vector

scaled by the Lagrange multiplier of the standardized problem, an optimal allocation, and

a decomposition of the allocation matrix. The decomposition tells DSPs which audience

categories and advertisers (ad campaigns) should be considered together. In the following,

we focus on the implications of our two most important outputs: the price vector and the

optimal allocation.

6.1 Implications of the Price Vector

We obtain a price vector as a by-product of the NAS problem, but because our model is

rooted in economic theory, it has an intuitive economic interpretation and can be used in

different ways. First, the price vector, as market clearing prices, can be used to determine a

set of internal prices for DSP – if DSPs were to charge these prices, advertisers should have

no incentive to move away from the optimal allocation. Second, because the price vector has

a shadow price interpretation, DSPs can use these prices to decide whether it has too few or

too many impressions for each audience category. For example, if the internal price for an

audience category is higher than its market price, the DSP should consider buying more of

such impressions.

6.2 Implication of the Optimal Allocation

A second, and probably more direct, application of our theory and algorithm is to guide

the scheduling of display ads for DSPs. Our NAS problem can be part of the “optimize-

and-dispatch” style ad scheduling system (Parkes and Sandholm, 2005), where the first step

is to solve an optimal NAS problem that produces an impression target for each campaign

and audience category. Then an online dispatcher allocates incoming impressions one by one

towards the impression targets. We briefly discuss below how the SIMS algorithm could be
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used for ad scheduling, including how to adapt to supply uncertainties.

Consider an environment where impressions arrive in a stochastic fashion over horizon

[0, T ]. We assume that there is an initial forecast about the total supply for each audience

category and subsequent updated forecasts. Let ωt = (ωt
1, ω

t
2, ..., ω

t
m) be the forecasts for the

total supply of all audience categories at time t. A general optimize-and-dispatch approach

to ad scheduling can unfold like this:

1. (Initial optimization) Solve the NAS problem for the initial forecast ω0 and obtain the

initial optimal terminal allocation (i.e., the target number of impressions at T ) x0 .

2. (Incremental optimization) At period t, if the forecast stays the same (ωt = ωt−1),

we use the same terminal allocation xt = xt−1. Otherwise, we recompute xt as the

solution to an NAS problem with the updated forecast ωt.

3. (Dispatch) Allocate impressions upon arrival so that total allocated impressions are

proportional to xt as much as possible.

Provided that the updated forecasts converge to the actual total supply as t → T , the above

optimize-and-dispatch procedure will approximate the optimal terminal allocation of the

final NAS problem.

Now, what if the supply forecast changes? We believe that a SIMS-powered ad scheduling

system can adapt to changing supplies fairly quickly. First, because an indicator matrix is

optimal for a wide range of supply vectors, as long as the new forecast does not deviate

much, we may not need a new indicator matrix. The only thing we need to do is to re-solve

a standardized NAS problem using the updated supply vector (steps 3-4 of Algorithm 1),

which can be done very efficiently. Even when the new forecast calls for a new indicator

matrix, we need not start from scratch because of the iterative nature of SIMS. We may

simply iterate from the current indicator matrix still we reach a new optimal indicator

matrix. Because the SIMS algorithm is shown to be very fast in our numerical experiments,

such incremental iterations can be done fairly frequently (e.g. every 15 minutes) .
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To further improve the real-time performance of the SIMS algorithm, one may compute

multiple probable supply scenarios ahead of time and store the solutions for later use. The

SIMS algorithm permits us to store only the optimal indicator matrices and the associated

price vectors, which can be combined with the supply forecast to quickly obtain the optimal

allocation by solving a standardized NAS.

7 Conclusion

Motivated by real-world applications of online display advertising, we propose a unique class

of allocation problem (NAS) where agents have concave value functions and different sub-

stitution preferences across numerous types of goods. Viewed as a transportation problem,

our formulation permits greater flexibility in modeling agent preferences than existing trans-

portation models because we allow multiple types of goods and agents to have heterogeneous

rates of substitution for these goods.

Drawing upon the economic concept of Pareto optimality, we develop a theory and design

an algorithm for solving NAS problem. The SIMS algorithm iterates through specially

constructed indicator matrices each of which permits fast solution via a combination of

decomposition and standardization techniques. Our simulation results show that SIMS runs

up to three orders of magnitude faster than generic interior-point nonlinear solvers. Our

theory has interesting connection with the martingale methodology used in asset pricing

while our algorithm is connected to the Simplex algorithm for linear programming problems.

This research has its limitations that warrant further research. We have focused on non-

physical goods and abstracted away transportation costs. It would be interesting to combine

our problem with a transportation problem in a similar manner as (Sharp et al., 1970). We

have used exponential valuation functions for numerical experiments, it would be interesting

to evaluate and compare the performance of SIMS under alternative valuation functions. So

far, we have relied on numerical studies to establish the performance and scalability of SIMS.
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Future research could establish the complexity of SIMS. Once we have a regular indicator

matrix, solving the corresponding single-good problem and verifying its optimality can be

done quickly in polynomial time. We conjecture the iteration over regular indicator matrices

to have similar complexity as the iteration over vertices in the Simplex method, which is

known to be exponential in the worst case but nevertheless takes polynomial time in practice

(Spielman and Teng, 2004).

This research can be extended in several ways. First, the current matrix search algorithm

we use in SIMS is by no means the most efficient one and we believe it can be further improved

with better heuristics. Because matrix regularity is an inherent property of any binary

matrix, we hope future research on regularity can lead to powerful matrix search algorithms.

Second, as we indicate in footnote 11, SIMS is applicable even if the objective functions are

not concave. Its performance under non-concave objectives and comparison with generic

nonlinear optimization software are promising directions for further study. Third, it would

be interesting to both theoretically and numerically compare the SIMS algorithm with a

recently proposed algorithm (Chubanov (2016)) for separable convex optimization problems.

Finally, it would also be appropriate to extend our problem to a stochastic setting. Extensive

research has been done on decision under uncertainty using stochastic programming (Shapiro

et al., 2009; Sahinidis, 2004) and robust programming (Bai et al., 1997; Mulvey et al., 1995).

It would be interesting to explore the utility of our framework for dealing with resource

allocation problems with heterogeneous preference for uncertainty.
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Appendix

A Technical Results and Proofs

A.1 General Conditions for Optimality

Proposition 5. An allocation x is optimal if and only if x satisfies constraints (2) and (3),

and there exists a Lagrange multipliers vector λ = (λ1, λ2, ..., λM) such that


xim > 0 ⇒ ∂Qi(xi)

∂xim
= λm

xim = 0 ⇒ ∂Qi(xi)
∂xim

≤ λm

. ∀i,m (17)

Proof. We form the Lagrangian as follows:

L =
∑
i∈N

Qi(
∑
m∈M

αimxim) +
∑
m∈M

λm

(
ωm −

∑
i∈N

xim

)
+
∑
m∈M

∑
i∈N

µixim.

The first order condition for xim is

∂Qi

∂xim

− λm + µim = 0

If xim > 0, µim = 0 and thus ∂Qi

∂xim
= λm. If xim = 0, µim ≥ 0 and thus ∂Qi

∂xim
≤ λm.

1



A.2 Solving a Single-good NAS Problem

We solve a single-good NAS problem (i.e., M = 1) here. With only one type of goods, xi,

αi, and ω become scalars. We define

vi ≡ Q′
i(0), ∀i (18)

di (y) ≡


Q′−1

i (y) , if y ≤ vi

0, otherwise

(19)

ω̄k ≡
∑
i∈N

di(vk), 1 ≤ k ≤ N (20)

where Q′
i(·) is the derivative of Qi(·).

One may interpret vi as i’s dropout price, or the price at which i’s demand drops to zero

and interpret di (·) as i’s (inferred) demand function. Without loss of generality, we assume

v1 ≥ v2 ≥ · · · ≥ vN ≥ 0. (21)

By this construction, ω̄k is the aggregate demand (of the first k − 1 agents) at k’s dropout

price and 0 = ω̄1 ≤ ω̄2 ≤ ... ≤ ω̄N .

Proposition 6. The optimal allocation is uniquely determined via

xi = di(λ),∀i ∈ N (22)

where the Lagrange multiplier λ > 0 is the unique solution to

ω =
N∑
i=1

di(λ). (23)

Furthermore, when ω ∈ [ω̄k, ω̄k+1], λ ∈[vk+1, vk].

Proof. By construction, the conjectured optimal allocation is feasible provided that the so-
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Input:

• The total supply ω and valuation functions {Qi} and marginal valuation functions
{Q′

i} in either functional or numerical form.

Steps:

1. Compute {vi} and re-index agents according to (21).

2. Compute {w̄k} as defined in (20).

3. For ω ∈ [ω̄k, ω̄k+1], compute λ as the solution to (23) on the interval [vk+1 , vk].

4. Output the optimal allocation x as defined by (22).

Algorithm 2: Optimal Allocation for single-good NAS

lution to (23) exists. We only need to show that the condition in Proposition 5 holds. We

first check that (23) indeed has a solution λ. Suppose ω ∈ [ω̄k, ω̄k+1] (Let vN+1 ≡ 0 and

ω̄N+1 =
∑

i∈N di(vN+1). We have

N∑
i=1

di(vk) ≤ ω ≤
N∑
i=1

di(vk+1).

Now because
∑N

i=1 di(·) is a monotone decreasing function, by continuity, there exists vk+1 ≤

λ ≤ vk such that ω =
∑N

i=1 di(λ). By Proposition 5, the proposed solution is optimal if and

only if Q′
i(ξi) = λ holds for i ≤ k and Q′

i(ξi) ≤ λ holds for i > k. For i ≤ k, by construction,

Q′
i(ξi) = λ, and for i > k, ξi = 0, so Q′

i(ξi) = vi ≤ vk ≤ λ. Therefore, our proposed allocation

is indeed optimal.

Based on Proposition 6, we develop Algorithm 2 for solving the single-good NAS prob-

lem. It should be noted that this algorithm does not place any restriction on the form of

valuation functions as long as they are strictly increasing and strictly concave. These valu-

ation functions do not have to take any explicit functional form and could be numerically

derived from empirical data.

3



A.3 Define Pareto Optimality

In this section, we formalize the concept of Pareto optimality. We define Pareto optimality

(PO) in terms of lack of Pareto-improving trades. A trade is a reallocation of goods among

agents.

Let T (x) denote the allocation after a trade T is executed on allocation x.

Definition 7. A trade T is feasible on allocation x if and only if T (x) is non-negative.

Definition 8. A trade T is profitable if ui (T (x)) ≥ ui (x) ,∀i ∈ N and at least one strict

inequality holds.

Definition 9. A trade T is profit neutral if ui (T (x)) = ui (x) ,∀i ∈ N .

Definition 10. A tradeT is unprofitable if there exists i ∈ N such that ui (T (x)) < ui (x).

Definition 11. (Pareto Optimal) An allocation x is Pareto optimal if none of the feasible

trades on x is profitable.

A.4 Conditions for Pareto Optimality

In this section, we prove the condition (8) is a necessary and sufficient condition for PO.

We need the following definitions and lemmas. In the following, we use (i1, i2, ..., iK) to

denote a sequence of K agents, where ik denotes the index of the k-th agent in the sequence.

Similarly, we use (m1,m2, ...,mK) and (ϵ1, ϵ2, ..., ϵK) to denote the corresponding sequences

of good types and quantities respectively. For notational convenience, we also define a 0-th

element of the sequences as a “double” for the M -th element (so that i0 ≡ iK , m0 ≡ mK ,

and ϵ0 ≡ ϵK), and the (K + 1)-th element a “double” for the 1st element (so that iK+1 ≡ i1

and mK+1 = m1).

Definition 12. A circular trade is a trade between a sequence of K ≥ 2 agents (i1, i2, ..., iK)

with good types (m1,m2, ...,mK) and quantities ϵ = (ϵ1, ϵ2, ..., ϵK) such that for each k = 1..K,

4



agent ik gives ϵk units of type mk to agent ik+1 (note that we define iK+1 ≡ i1). We denote

a circular trade as (C, ϵ), where

C = ((i1,m1) , (i2,m2) , ..., (iK ,mK)) , (24)

describes a trading cycle, i.e., a sequence of agents and good types involved in a circular

trade and ϵ describes the trading quantities.

Definition 13. We say a trading cycle C is feasible (profitable, profit-neutral, unprof-

itable) if there exists a trading quantity vector ϵ such that the circular trade (C, ϵ) is feasible

(profitable, profit neutral, unprofitable).

Clearly, C is feasible on x if and only if

xikmk
> 0,∀k = 1..K. (25)

The following result provides a criterion for a profitable (profit-neutral, unprofitable) trade

cycle.

Lemma 1. A trading cycle C as defined in (24) is profitable (profit-neutral, unprofitable) if

and only if
K∏
k=1

αikmk
⋚

K∏
k=1

αikmk−1
(26)

Proof. (“profitable”) We prove the “if” part by construction. Consider the following circular

trade: for each l = 1, · · · , K, let agent il give
∏l

k=1

αikmk−1

αikmk
units of type-ml to agent il+1.

The valuation of agent il, l ≥ 2, after receiving some type-ml−1 goods from agent il−1 and

5



giving some type-ml goods to agent il+1, is given by

Qil

(
M∑

m=1

αilmxilm + αilml−1

l−1∏
k=1

αikmk−1

αikmk

− αilml

l∏
k=1

αikmk−1

αikmk

)

= Qil

(
M∑

m=1

αilmxilm + αilml−1

l−1∏
k=1

αikmk−1

αikmk

− αilml

(
αilml−1

αilml

·
l−1∏
k=1

αikmk−1

αikmk

))

= Qil

(
M∑

m=1

αilmxilm

)

so agent il is indifferent after the trade. The valuation of agent i1 is given by (note that this

agent receives type-mK goods from agent iK)

Qi1

(
M∑

m=1

αi1mxi1m + αi1mK

K∏
k=1

αikmk−1

αikmk

− αi1m1

αi1mK

αi1m1

)

= Qi1

(
M∑

m=1

αi1mxi1m + αi1mK

(
K∏
k=1

αikmk−1

αikmk

− 1

))

> Qi1

(
M∑

m=1

αi1mxi1m

)

So agent i1 is better off after the trade, suggesting a profitable trade on the trading cycle C.

We now prove the “only if” part. We suppose a circular trade (C, ϵ) is profitable. Without

loss of generality, we assume that i1 is better off from the two adjacent trading steps (i.e.,

receiving ϵK units of mK from iK and giving ϵ1 units of m1 to i2) and agents at all other

nodes are not worse off from their two adjacent trading steps, namely,

ϵKαi1mK
> ϵ1αi1m1 (27)

ϵk−1αikmk−1
≥ ϵkαikmk

,∀k = 2..K (28)

Multiplying two sides of (27) and (28), we have

K∏
k=1

ϵk−1αikmk−1
>

K∏
k=1

ϵkαikmk

6



which implies (26).

The proof for the profit-neutral condition is analogous to that for the profitable condition

and thus omitted. The condition for unprofitable cycles follows immediately from the two

previous results.

Example 6. Continue with Example 1. Consider a “naive” allocation that solves an inde-

pendent optimal allocation problem for each type of goods. We obtain the following allocation

x0 =



5.4368 5.0289 1.3382 3.8107

2.6622 2.5018 0 0

3.9009 0.4693 3.0811 0

0 0 1.5807 2.1893


.

Given x0, the trading cycle C = ((1, 2), (2, 1)) is feasible and profitable. It is feasible because

x12, x21 > 0. It is profitable because α12α21 = 0.032 < 0.15 = α11α22 by Lemma 1.

Lemma 2. Denote C−1 as the counter cycle for C (i.e., C in reverse trading directions).

If a trading cycle C is profitable (profit neutral, unprofitable), then its counter cycle C−1 is

unprofitable (profit neutral, profitable).

Proof. By Lemma 1, the condition for C−1 to be profitable (profitable neutral, unprofitable)

is
K∏
k=1

αikmk−1
< (=, >)

K∏
k=1

αikmk
(29)

The results in Lemma 2 follows immediately from comparing (26) and (29).

Lemma 3. An allocation is Pareto optimal if and only if there does not exist a feasible and

profitable trading cycle.

Proof. We argue that given an allocation x, there is a profitable trade if and only if there is

a profitable trading cycle. The Proposition follows naturally from this argument.

7



The “if” part is obvious. So we only show the “only if” part. First, it is without loss of

generality to focus on profitable trades in which each agent both gives and receives. To see,

if an agent gives without receiving, the agent is worse off and cannot be part of a profitable

trade. If an agent receives without giving, we can drop the agent, return what the agent

receives, and obtain a new profitable trade.

Second, given that each agent both gives and receives in the trade t, it always contain

a trading cycle. To see, we can start from any agent i in t and trace to someone who

receives from i. Because the number of agents is finite, eventually we will reach an agent

that we have previously encountered, thus we have a trading cycle C that is feasible under

allocation x. If C is profitable, then we have our result. If not, C−1 must be profit-neutral

or profitable (Lemma 2). So we can find a circular trade (C−1, ϵ) which (a) is profitable or

profit neutral and (b) involves each receiver on the trading cycle C returning a portion of

the received amount to the sender and at least one receiver returns all the goods received

on C. We can then define a new trade t′ that combines t with (C−1, ϵ). (a) implies that t′

is still profitable and (b) implies that t′ is still feasible but no longer has the cycle C. (b)

also implies that no new trading step, and hence no new cycle, is introduced because of t′.

Repeating this procedure with t′, there must be another cycle on t′ that is either profitable

or can be eliminated (without adding new ones) in a new feasible and profitable trade t′′.

Doing this repeatedly, eventually, we either find a profitable cycle or there is no cycle left.

The latter is impossible by our earlier argument.

Lemma 3 implies that we only need to check all feasible trading cycles to know if an

allocation is PO.

Proof of Theorem 1

Proof. “If”: We will show that given (8) all feasible cycles are unprofitable. Consider any

trading cycle C = ((i1,m1) , (i2,m2) , ..., (iK ,mK)). If C is feasible, we must have Iikmk
= 1

8



for all k = 1, ..., K. By (8), we have

K∏
k=1

αikmk

αikmk−1

≥
K∏
k=1

pmk

pmk−1

.

We note that pm0 = pmK
by our notation convention, the right hand side is equal to 1, which

implies that C is not profitable (Lemma 1).

“Only if”: For a given PO indicator matrix I, we need to show the existence of a strictly

positive vector p = (p1, p2, · · · , pM) satisfying (8). Before we show this, we first define, for

any 1 ≤ m ≤ M, 1 ≤ n ≤ M, m ̸= n,

Lmn = max
2≤K≤M

{
K∏
k=2

αikmk−1

αikmk

∣∣∣∣m1 = m,mK = n, Ii1m1 = Ii2m2 · · · = IiKmK
= 1

}
(30)

Hmn = min
2≤K≤M

{
K−1∏
k=1

αikmk

αikmk+1

∣∣∣∣m1 = m,mK = n, Ii1m1 = Ii2m2 · · · = IiKmK
= 1

}
(31)

and Lmm = Hmm ≡ 1.

1) We claim that a vector p satisfies (8) if and only if

Lmn ≤ pm
pn

≤ Hmn,∀1 ≤ m ≤ M, 1 ≤ n ≤ M (32)

1-1) To see (32) is necessary, consider L12 andH12 as an example. Let (i1,m1) , (i2,m2) ,...,(iK ,mK)

be a sequence of agent-type pairs (K ≥ 2) such that m1 = 1, mK = 2, and Iikmk
= 1,∀k =

1, · · · , K. Then the following inequalities are required by (8):

αi2m1

αi2m2

≤ pm1

pm2

≤ αi1m1

αi1m2

,

αi3m2

αi3m3

≤ pm2

pm3

≤ αi2m2

αi2m3

,

...

9



αiKmK−1

αiKmK

≤
pmK−1

pmK

≤
αiK−1mK−1

αiK−1mK

,

So p1/p2 must satisfy:

K∏
k=2

αikmk−1

αikmk

≤ p1
p2

=
pm1

pmK

≤
K−1∏
k=1

αikmk

αikmk+1

. (33)

Because (33) must hold for any such sequence, we must have (32) for Lmn and Hmn defined

by (30) and (31).

1-2) To see (32) is sufficient, consider a vector p that satisfies (32). To show condition

(8) holds, consider a sequence of agent-type pairs (i,m) , (j, n) such that Iim = Ijn = 1. By

definition of Hmn,

Hmn ≤ αim

αin

.

By (32),

pm
pn

≤ Hmn.

Therefore, (8) holds.

2) We now show that there always exists a vector p = (p1, p2, ..., pM) that satisfies (32).

We show this in three steps.

2-1) We first show that Lmn ≤ Hmn. We show L12 ≤ H12 as an example. Without loss

of generality, we assume

L12 =
K∏
k=2

αikmk−1

αikmk

, H12 =
K̃−1∏
k=1

αĩkm̃k

αĩkm̃k+1

for two sequences (i1,m1) , (i2,m2) , ..., (iK ,mK) and
(̃
i1, m̃1

)
,
(̃
i2, m̃2

)
, ...,

(̃
iK̃ , ñK̃

)
such that

wherem1 = m̃1 = 1,mK = m̃K = 2, Iikmk
= 1 for k = 1, ..., K, and Iĩkm̃k

= 1 for k = 1, ..., K̃.

K∏
k=2

αikmk−1

αikmk

≤
K̃−1∏
k=1

αĩkm̃k

αĩkm̃k+1

10



or
K∏
k=2

αikmk−1

K̃−1∏
k=1

αĩkm̃k+1
≤

K∏
k=2

αikmk

K̃−1∏
k=1

αĩkm̃k

is guaranteed by Pareto optimality and Lemma 1 for trading cycle

(i2,m2) , (i2,m2) , ..., (iK ,mK) ,
(̃
iK̃−1, m̃K̃−1

)
, ..,
(̃
i2, m̃2

)
,
(̃
i1, m̃1

)
.

2-2) We next show

Hmn ≤ HmkHkn.

Without loss of generality, we assume

Hmk =
K−1∏
s=1

αisms

αisms+1

, Hkn =
K̃−1∏
t=1

αĩtm̃t

αĩtm̃t+1

for two sequences(i1,m1) , (i2,m2) , ..., (iK ,mK) and
(̃
i1, m̃1

)
,
(̃
i2, m̃2

)
, ...,

(̃
iK̃ , m̃K̃

)
such that

m1 = m, mK = k, m̃1 = k, m̃K̃ = n, Iisms = 1,∀s = 1, · · · , K and Iĩtm̃t
= 1,∀t = 1, · · · , K̃.

We denote the combined sequence (i1,m1) , ..., (iK−1,mK−1) ,
(̃
i1, m̃1

)
, ...,

(̃
iK̃ , m̃K̃

)
as

(h1, l1) , (h2, l2) , ...,
(
hK+K̃−1, lK+K̃−1

)
with l1 = m and lK+K̃−1 = n.

By the definition of Hmn, we must have

Hmn ≤
K+K̃−2∏

t=1

αhtlt

αhtlt+1

=
K−1∏
s=1

αisms

αisms+1

K̃−1∏
t=1

αĩtm̃t

αĩtm̃t+1

= HmkHkn

Apparently, we have

Lmn = H−1
nm, (34)

which directly implies Lmn ≥ LmkLkn.

2-3) Now, we can show that there must exist p such that pm/pn ∈ [Lmn, Hmn] for m,n ∈

11



{1, · · · ,M}, We show this by constructing p element by element. p1 can be trivially set to any

value, say 1. We suppose that we can find p1, p2, · · · , pk−1 such that pm/pn ∈ [Lmn, Hmn] for

m,n ∈ {1, · · · , k − 1}. By adding pk, we have additional constraints (notice that constraints

on pm/pk are redundant given (34)):

Lkm ≤ pk
pm

≤ Hkm, ∀m = 1..k − 1.

or equivalently,

max
m

{
pmLkm

∣∣∣∣m = 1, · · · , k − 1

}
≤ pk ≤ min

m

{
pmHkm

∣∣∣∣m = 1, · · · , k − 1

}
.

pk exists unless

max
m

{
pmLkm

∣∣∣∣m = 1, · · · , k − 1

}
> min

m

{
pmHkm

∣∣∣∣m = 1, · · · , k − 1

}
. (35)

Without loss of generality, we assume

max
m

{
pmLkm

∣∣∣∣m = 1, · · · , k − 1

}
= psLks and min

m

{
pmHkm

∣∣∣∣m = 1, · · · , k − 1

}
= ptHkt.

for some s, t ∈ {1, .., k − 1}. (35) is equivalent to

ps
pt

>
Hkt

Lks

= HskHkt ≥ Hst.

But this is impossible because ps/pt ≤ Hst. So by induction, we can construct all elements

of the price vector p. In other words, there must exist a price vector.

12



A.5 Standardization

Proof of Theorem 2

Proof. Given x solves (12) and x is non-negative by assumption, we only need to show that

x satisfies (17) for it to be the solution to the original NAS problem.

Denote the Lagrange multiplier of the standardized problem as λ̃. Because z∗ is a solution

to the standardized problem, we have


z∗i > 0 ⇒ ∂Q̃i

∂zi

∣∣∣∣
zi=z∗i

= λ̃

z∗i = 0 ⇒ ∂Q̃i

∂zi

∣∣∣∣
zi=z∗i

≤ λ̃

(36)

With p =

(
p1, p2, ..., pM

)
being the price vector, we show that the vector

(
λ̃p1, λ̃p2, ..., λ̃pM

)
satisfies the conditions in (17) and is the Lagrange multiplier of the original NAS.

First, we notice that if Iim = 1,

∑
l∈M

αilxil =
∑
l∈M

αilxilIil =
αim

pm

∑
l∈M

plxilIil =
αim

pm
z∗i

where the first equality is because we always have xil = 0 when Iil = 0 and the second

equality is because αim

pm
= αil

pl
for any l such that Iil = Iim = 1 by the definition of a price

vector.

If Iim = 1, then by (10),

∂Q̃i

∂zi

∣∣∣∣
zi=z∗i

=
αim

pm
Q′

i

(
αim

pm
z∗i

)
=

αim

pm
Q′

i

(∑
l∈M

αilxil

)
.

We discuss the following two cases with Iim = 1.

13



(a) If xim > 0, then zi > 0. Hence,

∂Qi

∂xim

= αimQ
′
i

(∑
l∈M

αilxil

)
= pm

αim

pm
Q′

i

(∑
l∈M

αilxil

)
= pm

∂Q̃i

∂zi

∣∣∣∣
z=z∗i

= pmλ̃

(b) If xim = 0, then, similar to (a), we have

∂Qi

∂xim

= αimQ
′
i

(∑
l∈M

αilxil

)
= pm

αim

pm
Q′

i

(∑
l∈M

αilxil

)
= pm

∂Q̃i

∂zi

∣∣∣∣
z=z∗i

≤ pmλ̃

where the inequality is due to (36).

If Iim = 0, then there must exist n ∈ M and n ̸= m such that Iin = 1. We have

∂Qi

∂xim

=
αim

αin

∂Qi

∂xin

≤ αim

αin

pnλ̃ ≤ pmλ̃

where the first inequality follows directly from the previous case and the second inequality

is from the definition of the price vector and the fact Iin = 1. Hence, ∂Qi/∂xim ≤ pmλ̃ holds

for any xim = 0. By Proposition 5, x is the solution to the original problem and the vector(
λ̃p1, λ̃p2, ..., λ̃pM

)
is the Lagrange multiplier for the M supply constraints.

Note in the above proof we have assumed the existence of a solution to the system of

linear equations (12). This is a valid assumption although the proof is more involved and

requires the concept of regularity. We refer interested readers to Lemma 5.

A.6 Regularity

Proof of Proposition 1

Proof. Without loss of generality, we show that p1/p2 is uniquely determined if I is connected.

From the proof of Theorem 1, we know p1/p2 lies in the interval [L12, H12] where L12 and

H12 are defined in (30) and (31) respectively.

By connectivity, there exists a path m1
i1↔ m2, m2

i2↔ m3, ..., mL
iL↔ mL+1 connecting

14



m1 = 1 and mL+1 = 2.

Because Ii1m1 = Ii2m2 = · · · = IiLmL
= 1,

H12 ≤
αi1m1

αi1m2

· αi2m2

αi2m3

· · · αiLmL

αiLmL+1

.

Because Ii1m2 = Ii2m3 = · · · = IiLmL+1
= 1,

L12 ≥
αi1m1

αi1m2

· αi2m2

αi2m3

· · · αiLmL

αiLmL+1

.

Hence, we must have p1/p2 = H12 = L12.

Proof of Proposition 2

Proof. We prove (a) the existence and (b) the uniqueness of the pseudo price vector by

construction. We start with an empty set M0 = ∅, and gradually add good types into it

until we include all good types. Along this set expansion, we define the pseudo price for

each newly included good type. We first add good type m1 and set p̃m1 = 1 to normalize

the pseudo price vector to be constructed. By connectivity of I, there is another type, say

m2, that is connected to M0 via an agent, say i1. We let p̃m2 = p̃m1

αi1m2

αi1m1
so that (13)

trivially holds by this very construction. Further, by regularity, i1 and hence p̃m2 are unique

in terms of satisfying (13). Suppose at the k-th step where k < M , we have obtained a

unique pseudo price vector (1, p̃m2 , p̃m3 , ..., p̃mk
) that satisfies (13). Now consider including

the (k + 1)-th type, mk+1, that is currently not in M0 but is connected with M0. Clearly,

mk+1 exists because I is connected. By regularity, mk+1 is connected to M0 via a single

agent, say ik+1. Suppose mk+1 is connected via ik+1 to L (L ≥ 1) types, say l1, l2, ..., lL, in

M0. Define p̃mk+1
≡ p̃l1

αik+1mk+1

αik+1ml1

, based on the connection between mk+1 and l1. If L = 1,

the new vector
(
1, p̃m2 , ..., p̃mk+1

)
clearly satisfies (13), and p̃mk+1

is unique. If L > 1, because

l1, l2, ..., lL are all in M0 and connected with each other, by induction hypothesis, p̃l1 , ..., p̃lL

satisfy (13). Therefore, p̃l1
αik+1mk+1

αik+1l1
= p̃l2

αik+1mk+1

αik+1l2
= ... = p̃lL

αik+1mk+1

αik+1lL

. In other words, the
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value of p̃mk+1
is really invariant to the choice of l ∈ {l1, · · · , lL} and (13) holds for all the L

newly included connections. Hence
(
1, p̃m2 , p̃m3 , ..., p̃mk+1

)
is well-defined and is unique. By

induction, the pseudo price vector exists and is unique.

We now prove (c). If I is also PO, then by Proposition 1 and the fact that Iim = Iin = 1

for any m
i↔ n, the price vector must satisfy

pm
pn

=
αim

αin

.

Because the price vector p and the pseudo price vector p̃ are both unique up to a scaling

factor, and are defined by the same ratio conditions, they must be identical up to a scale

factor.

Proof of Theorem 3

Proof. We prove by construction. Consider a Pareto-optimal allocation x indicated by an

irregular I. Without loss of generality, suppose that the connection between m0 and compo-

nent M0 (m0 /∈ M0) is not regular. Say m0
i1↔ m1and m0

i0↔ mK , for some m1,mK ∈ M0

and i0 ̸= i1 (the case m1 = mk is also permitted). Because M0 is connected, there exists a

path between m1 and mK , say m1
i2↔ m2

i3↔ m3...
iK↔ mK . So the following trading cycle

C = ((i0,m0), (i1,m1), (i2,m2), · · · , (iK ,mK))

is feasible. By Lemma 3, C cannot be profitable. If C is unprofitable, then by Lemma 2,

C−1 is profitable, which cannot be true by Lemma 3 and the fact that C−1 is also feasible.

Hence, C must be profit neutral. So we can find a profit-neutral trade (C, ϵ) such that after

the trade at least one agent ik runs out of mk. This is bound to happen because at least

two agents are involved in this cycle and {m0,m1, ..,mK} is a distinct set of nodes. If i0

runs out of m0 or iK runs out of mK , we eliminate a connection between m0 and M0. If ik,

which is different from i0 and iK , runs out of mk, then either M0 is no longer connected;
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or we may find a different path connecting m1 and mK and repeat the process. The trade

does not add new feasible cycles because every recipient is already allowed to own the type

of goods that he receives. We can repeatedly use the same technique which removes an

irregular connection by either eliminating all “redundant” connections causing irregularity

or breaking up a component. Because this process does not add new connections or cycles

and because there are only a limited number of redundant connections, we will eventually

reach a new allocation that is regular. Since all trades leading to x′ are profit neutral, the

new allocation must also be PO.

Lemma 4. If an indicator matrix I is connected and regular, then it has exactly N +M − 1

“1” elements.

Proof. We consider the process of constructing Ij step by step. In each step k, an type

(column) mk connected to at least one existing type is added and so are agents (rows) who

own mk but not the existing types. We denote Ikj and Nk
j as the indicator matrix and the

number of rows after the kth step respectively. Clearly, after adding the first type, I1j has a

size of N1
j × 1, which has exactly N1

j + 1− 1 “1” elements. Suppose Ikj has Nk
j + k − 1 “1”

elements. Now we add mk+1. By construction, the new rows contribute exactly Nk+1
j −Nk

j

“1” elements. By the definition of regular connections, the new column has exactly one

“1” element at the existing rows. So the new matrix has Nk
j + k − 1 + Nk+1

j − Nk + 1 =

Nk+1
j + (k + 1) − 1 “1” elements. By induction, the matrix Ij must have Nj +Mj − 1 “1”

elements.

Proof of Proposition 3

Proof. Clearly, we only need to prove the result when the regular indicator matrix is con-

nected because equations from different connected components are unrelated and can be

solved separately. Assuming connectedness and using Lemma 4, we notice there is one re-

dundant equation in (12) because if we only keep the first N + M − 1 equations, we still
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have:

∑
i∈N

z∗i =
∑
i∈N

(∑
m∈M

p̃mximIim

)
=
∑
m∈M

p̃m

(∑
i∈N

ximIim

)
=

∑
m∈M,m̸=M

p̃mωm + p̃M
∑
i∈N

xiMIiM

Because the feasibility constraint
∑

i∈N z∗i ≤ ω̃ always binds, we can infer ωM =
∑

i∈N xiMIiM

from the above and (9). Without loss of generality, assume the last equation (i.e.,
∑

i∈N ,IiM=1 xiM =

ωM) is dropped.

Noting that there are exactly N + M − 1 “1” elements in indicator matrix I (Lemma

4), we have exactly the same number of equations as the number of unknowns. To show

x is uniquely determined by (12), we only need to show the (N +M − 1) × (N +M − 1)

coefficient matrix defined by the first N +M − 1 equations is invertible. Let this coefficient

matrix be A. The N +M − 1 columns correspond to the N +M − 1 unknowns. The rows in

A can be grouped into two types corresponding to the two types of equations in (12). Each

of the first N rows (type-1 rows) corresponds to an agent while each of last M − 1 rows

(type-2 rows) corresponds to a type of goods. Except for xiM (i ∈ N ) each of which appears

only once in the system of equations, each unknown appears exactly twice in the system

of equations. Hence, for each column of A, there are either one or two nonzero elements.

Suppose A is not invertible, its row vectors must be linearly dependent. Hence, there exists

a set of nonzero numbers, γi1 , γi2 , · · · , γiK , such that

K∑
k=1

γikAik = 0 (37)

where Aik is the ik-th row of A. Because there are either one or two nonzero elements in

each column of A, for each agent, if the corresponding type-1 row is in {Aik |k = 1, · · · , K},

all the type-2 rows corresponding to the types of goods that the agent hold must also belong

to {Aik |k = 1, · · · , K}. Hence, all types of goods connected to the types of goods implied
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by {Aik |k = 1, · · · , K} must also have their corresponding rows in {Aik |k = 1, · · · , K}.

Because I is connected, this implies that {Aik |k = 1, · · · , K} contains type-2 rows, hence

also all type-1 rows. Now it is straightforward to see that (37) cannot be true because for

columns of A corresponding to xiM , i ∈ N , there is only one nonzero element.

Lemma 5. For a Pareto-optimal indicator matrix I, the system of linear equations defined

by (12) has at least one solution.

Proof. We assume I is not regular because otherwise the result follows directly from Propo-

sition 3. Clearly, we only need to prove the case when I is both PO and connected because

equations from different connected components are unrelated and can be solved separately.

From the proof of 3, any Pareto-optimal allocation x0 restricted by I is equivalent to a

regular allocation x1 which is also restricted by I because the procedure transforming x0to

x1 only involves setting some element I to 0 (or in the words of the the proof of 3, removing

connections). Define Î such that Îim = 1 only if the corresponding element in x1 is positive.

Then Î is regular and Îim = 1 only if Iim = 1 which further implies that any price vector for

I is also a price vector for Î.

Consider the standardization procedure for Î and use the same price vector p. Proposition

3 ensures the existence of a solution to (12) corresponding to Î. Denote the solution by ŷ.

Consider the unrestricted elements of I. If Iim = 1 and Îim = 1, set xim = yim; if Iim = 1

and Îim = 0, set xim = 0. Clearly, x is a solution to (12) corresponding to I.

Proof of Proposition 4

Proof. By construction, x satisfies the feasibility condition. With the condition that x is

non-negative, we only need to show that x satisfies (17). We have already shown that the

conditions (17) are satisfied for (i,m) such that m ∈ Mj and i ∈ Nj. Because for m ∈ Mj

and i /∈ Nj, xim = 0 by construction, (17) follows from condition (15)(note that the Lagrange

multipliers are determined by the sub problems).
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B The Search Heuristic

Before we discuss the search heuristic we currently use in our implementation of SIMS, we

need a few definitions. Suppose at step t, we have the allocation matrix x, the associated

indicator matrix I. Denote the marginal valuation matrix as follows:

Q′ (x) =



q11 q12 · · · q1m

q21 q22 · · · q2m
...

...
...

...

qn1 qn2 · · · qnm


Define the Lagrange multiplier vector at step t as λ = (λ1, λ2, · · · , λm) where λj = maxi qijIij

and define the imbalance matrix with typical element bij being

bij = qij/λj.

A value of bij greater than 1 indicates an imbalance at row i column j in I, which means we

need to change Iij from 0 to 1. We say an element at row i column j in I is more imbalanced

than an element at row i′ and column j′ if bij > bi′j′ > 1.
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