Allocation and Pricing of Substitutable Goods:
Theory and Algorithm”

Huaxia Rui?, De Liu®, and Andrew Whinston®

December, 2016

Abstract

Motivated by the thriving market of online display advertising, we study a problem
of allocating numerous types of goods among many agents who have concave valua-
tions (capturing risk aversion) and heterogeneous substitution preferences across types
of goods. The goal is both to provide a theory for optimal allocation of such goods,
and to offer a scalable algorithm to compute the optimal allocation and the associ-
ated price vectors. Drawing on the economic concept of Pareto optimality, we develop
an equilibrium pricing theory for heterogeneous substitutable goods that parallels the
pricing theory for financial assets. We then develop a fast algorithm called SIMS
(Standardization-and-Indicator-Matrix-Search). Extensive numerical simulations sug-
gest that the SIMS algorithm is very scalable and is up to three magnitudes faster than
well-known alternative algorithms. Our theory and algorithm have important implica-
tions for the pricing and scheduling of online display advertisement and beyond.
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1 Introduction

Online platforms and digital markets increasingly match customers with massive number
of heterogeneous goods and services. One prominent example is online display advertising,
which refers broadly to text, graphical, video, or interactive advertisements that mobile and
Internet users encounter when they browse non-search web pages or interact with applica-
tions. Due to increasingly sophisticated digital tracking and predictive analytics® display
advertisers can now distinguish audiences at a granular level, resulting in numerous audience
types: one category, for instance, could be young, male, high-income adults who love video
games and live in urban areas. McAfee ef all (2000) report that advertiser campaigns can
have trillions of distinct audience categories to choose from, just based on demographics,
geographic location, and interests-based “behavioral” attributes. Naturally, with refined
audience categories, advertisers (or even campaigns) can demonstrate heterogeneous substi-
tution preferences. For example, a video game company may value audience categories that
include young male adults regardless of their locations, while a casino may value audience
categories that include adults in close vicinity regardless of their gender or age. Thus, the
casino would not mind substituting impressions from young adults with those from older
adults (perhaps for a lower cost). Such heterogeneous substitution preferences also exist
in many other online matching markets that feature numerous differentiated products or
services, such as vacation rental marketplace (e.g., Airbnb and HomeAway) crowd-sourcing
labor markets (e.g., Amazon Mechanical Turk), and micro loans (e.g. LendingClub and
Prosper).

While there are gains from substituting one type of goods with another, there are also
preferences that could limit substitution, such as preferences for smooth consumption over

time and for cross-sectional diversification. For example, the video game company may

5For example, in Internet advertising, an Internet user’s past behavior and geographic location can be
tracked using browser cookies, allowing advertisers to draw inferences about a user’s demographic background
and interests. In mobile advertising, device and content characteristics, as well as geographic information
may also be used to target and predict user interests.



prefer that their ad impressions reach all geographical locations; the casino may prefer that
impressions be evenly distributed throughout a month. We argue that such preferences can
be captured by risk aversion, a concept from the utility theory in economics. Indeed, risk
aversion has been used in insurance and finance industries since very early time for similar
purposes (e.g., Harry M. Markowit4, 1959).

To our knowledge, existing literature has not simultaneously modeled heterogeneous sub-
stitution preferences and heterogeneous risk aversion in a unified framework. Moreover, given
the nature of the applications, it is critical that any new modeling approach can handle mas-
sive number of distinct good types computationally. To fill this gap, we formulate a new
allocation problem that is well-motivated from the economic theory and captures heteroge-
neous substitution and risk-aversion preferences. We then address a formidable challenge of
developing a new theory-driven algorithm that can solve the proposed allocation problem at
very large scales.

Our new allocation problem allows many types of goods to be allocated among many
agents, each with a concave valuation (for modeling risk aversion) and a unique substitution
preference. The objective of the problem is to maximize total realized values of all agents,
subject to resource availability constraints. We call such a formulation a nonlinear allocation
with substitution (NAS). The solution to such problems holds implications for online display
advertising and potentially many other online matching markets.

Our model and solution approaches could be useful for digital display advertising market,
which is expected to reach $32 billion in US revenue in 2016, and continues to grow rapidly
at a rate of over 10% per year (EMarkefer, 2016). Specifically, our approaches are particu-
larly relevant to demand-side platforms (DSPs), which buy display ads from ad exchanges,
publisher networks, and other advertising properties on behalf of their member advertis-
ers. Because a DSP can represent many advertisers, it must allocate impressions internally
among member advertisers. A critical advantage of DSPs over the conventional ad agency

is their allocative efficiency (Vidakovid, 2013). By more efficiently allocating impressions



among advertisers (or ad campaigns), DSPs can realize higher advertiser value, which in
turn enables them to charge a higher fee and attract more advertisers in a long run. For
this reason, this paper focuses on maximizing allocative efficiency in the NAS problem. In
section B, we discuss the implications of our problem for display advertising in more detail.

Our formulation differs from most prior approaches to the advertising allocation problem
in that we follow an economic approach to model advertiser preferences rather than relying on
ad-hoc specifications. For example, in the literature review, we contrast our approach with
several existing approaches for addressing advertisers’ need for diversifying across several
audience categories. While the formulation of NAS is motivated by the problem of allocating
display advertising, it is well suited for allocation problems in sharing economy such as
traveler-room matching in vacation rental marketplace and task allocation in crowd-sourcing
labor markets (Ho and Vaughan, 2012). In these markets, the number of distinctive types of
tasks and services are high, and customers often have heterogeneous substitution preferences.

The contributions of this paper are twofold: first, we provide a theory for allocating
and pricing numerous types of goods given the heterogeneous substitution and risk-aversion
preferences. The theory addresses, for example, the existence of a price vector and a cor-
responding allocation such that all price-taking agents find their allocation optimal for the
given prices. It also provides solid foundation for the development of a fast algorithm for
solving large scale NAS problems. Second, we develop a scalable algorithm for finding an
optimal allocation of such goods in a time-constrained environment, which is particularly
important because many NAS problems require fast computation. Our simulation results
suggest that our algorithm can solve much larger problems than generic optimization algo-
rithms, and has significant advantages over existing optimization packages in terms of speed
and memory consumption.

More specifically, we have developed two key theoretical findings in this paper. The first
is the equivalence between Pareto optimality (PO) and the existence of a price vector, a

concept closely related to competitive equilibrium prices (Gul_and Sfacchetfi, T999). Once



a price vector is given, one can easily obtain the corresponding Pareto-optimal allocation
by converting multiple good types into a single standard good type (a procedure we call
“standardization” ), thereby dramatically reducing the dimension of the problem. Our second
key theoretical insight is the finding that at least one optimal allocation is reqular, a key
new concept we introduce in response to the difficulty of directly finding the price vectors
for PO allocations suggested by the first key theoretical finding. Each regular allocation has
a pseudo price vector, one that coincides with a true price vector if the regular allocation
is also PO. Unlike true price vectors, pseudo price vectors are much easier to find. More
importantly, we also establish that at least one optimal allocation satisfies the regularity
condition, thus we may focus only on regular allocations, which is not only convenient but
also sufficient.

Based on these theoretical insights, together with a heuristic for searching the space of
regular allocations indexed by indicator matrices, we develop a new algorithm called SIMS
(Standardization-and-Indicator-Matrix-Search). The algorithm iterates among regular allo-
cation problems and solve them by the standardization technique. Our simulation results
suggest that SIMS is up to three magnitudes faster than generic convex optimization algo-
rithms.

It is interesting to note that many of our theoretical concepts and findings have parallels
in the asset pricing theory of finance, which provides guidance on how financial assets,
which yield uncertain cash flows over multiple periods, should be priced. For example, the
concept of PO is closely related to the absence of arbitrage in asset pricing. Analogous to
the equivalence between PO and the existence of a price vector, it is established in finance
the equivalence between the absence of arbitrage and the existence of a state price vector
(Ross, 1978). Furthermore, our standardization technique shares the same spirit with the
martingale methodology used for asset pricing (Harrison and Kreps, 1979; Duffid, 200T).

These theoretical parallels underscore the similarity between display advertising markets

and financial markets, which the literature has just begun to explore (Muthukrishnan, 200Y;



McAted, POTT).5 In this sense, our theory can be viewed as the counterpart of the asset
pricing theory in the burgeoning new market for display advertising.

The SIMS algorithm we develop here is in many ways analogous to the simplex algorithm
for linear programming. For example, the indicator matrices play a role as the basic solution
in the simplex algorithm. The simplex algorithm iterates through basic solutions which
essentially correspond to vertices of a polyhedron while the SIMS algorithm iterates through
indicator matrices which essentially correspond to faces of a polyhedron. Different from the
simplex algorithm, which finds the optimal solution at vertices of the polyhedron, the SIMS
algorithm must go a step further to search the interior of a face of a polyhedron for an
optimal solution.

We organize the rest of the paper as follows: we review the related literature in Section
2 and describe our research problem in Section B. In Sections @ and B, we derive the theory
and design the algorithm for NAS problem. Section B discusses implications of our results

for online display advertising. Section [@ concludes the paper.

2 Research Background

The problem of allocating heterogeneous goods among agents is a core problem of any ex-
change economy. Such a problem can be thought of as a transportation problem where

types of good are sources and agents are destinations.?

Below, we review the connections
between this research and the related transportation models and their applications to display

advertising.

6Practitioners seems to be ahead of the academics in terms of realizing the similarities between the two
markets. For example, a co-founder of a digital ad trading company who spent 15 years in the financial
industry commented that ”We're talking about a market that shares a lot of the same characteristics as
financial markets” and they are “looking to apply investment banking tools and philosophies to online
advertising.” For more details, please see the following Wall Street Journal article: http://www.ws7j.com/
articles/SB10001424052702303949704579459103743176792.

"Transportation problem is an important branch in the field of operations research,established several
decades ago with pioneering works by (Kantorovich, [960; HifchcocK, 1947; Koopmand, 194Y9; Dantzig, [951)
and numerous subsequent contributions (see [Ahuja et all T993 for a comprehensive overview).


http://www.wsj.com/articles/SB10001424052702303949704579459103743176792
http://www.wsj.com/articles/SB10001424052702303949704579459103743176792

Our work is related to a growing display advertising literature that applies transporta-
tion models to solve the problem of allocating advertising resources. The basic problem of
this literature is that given the supply of heterogeneous impressions, how to schedule the
advertisements from different ad campaigns to maximize their goals. [Langheinrich et al:
(I999) was among the first to formulate display advertising as a linear transportation prob-
lem, where the goal is to allocate ads across different audience types to maximize the total
number of estimated clicks while meeting the impression goals set by ad campaigns. Such
a linear programming formulation tends to target ads on audience types where they per-
form the best, as measured by estimated click through rates. However, this also gives rise
to an “over-targeting” problem (Chickering and Heckerman, 2000; [Tomlin, P000) where the
optimal solution tends to show an ad to a narrow group of audience types. This is unde-
sirable from an advertiser’s perspective, because advertisers generally prefer to spread an
ad across multiple audience types (Nakamura and Ahd, 2005). Several subsequent studies
attempt to remedy this problem by modifying the basic linear transportation problem, in-
cluding imposing minimum number of impressions per audience type (Langheinrich et all,
1999; Nakamura and Abe, 2005) and adding a nonlinear entropy term in the objective func-
tion to force wide-spread allocation (Tomlin, 2000). More recently, Turner (2012) proposed
a quadratic objective function that aims to allocate impressions proportionally across all de-
sirable audience types. The over-targeting problem reflects advertisers’ preference for diverse
audience types (or “reach”), which in turn suggests there are diminishing returns associated
with each audience type. Instead of heuristically patching the linear transportation model,
we adopt a more theory-driven approach that directly models valuation functions with di-
minishing returns and the implied preference for diversity, using the utility function theory
from economics. As we will illustrate, our utility function approach lends to nice economic
interpretations of our findings and reveals a deep connection between the display advertising

market and the financial market. Another benefit of our approach is the added flexibility of



allowing heterogeneous substitution preferences across advertisers. ®

To our knowledge, our transportation formulation has not been studied before. While
our approach also results in a nonlinear (concave-valuation) transportation problem, we note
that it is quite different from several other nonlinear (convex-cost) transportation problems
in the literature. One type of nonlinear transportation problem, studied in the early eco-
nomics literature, is the multi-facility production-transportation (P-T) problem (Sharp et all,
[970; Shetty], T959). In a P-T problem, a single type of goods is produced at and shipped
from multiple plants, and the goal is to minimize total costs, which is the sum of linear
transportation costs and convex production costs. Unlike the P-T formulation, we model
multiple types of goods. Moreover, we also develop an algorithm to solve our problem at a
very large scale.

Another related nonlinear transportation problem is the multi-commodity network flow
(MCF) problem studied in the context of telecommunication networks. This literature seeks
to optimally route multiple messages through a telecommunication network subject to con-
vex congestion costs at arcs (Ouoron ef all, PO00; Babonnean and Vial, 2009). This literature
is also concerned with solving large-scale convex MCF problems (e.g., Ouorou, 2007; Babon-
nean_and Vial, 2009). Our problem differs from the convex MCF problem in at least two
ways: in our problem, coupling occurs at destination nodes (via concave value functions)
rather than at arcs; the MCF problem assumes identical costs for transporting messages
while we allow agents to have different marginal values for goods. Due to these differences,
specialized solution techniques for MCF problems cannot be used for our problem.

Our problem belongs to a class of problem called nonlinear resource allocation (NRA)
problem, which, in its general form, is formulated as (see Pafrikssonl 2008 and Kafoh and

Ibaraki T998 for a review)

n

min f (zq, T2, ..., T,) , s.t. ij =b, z; € [l;,uj],Vj=1.n
j=1

8The entropy approach, for instance, imposes the same preference for diversity across all advertisers.



where the goal is to allocate one type of resources of a total amount b to n activities so
that the objective value f (x1,s,...,2,) is minimized. NRA problems can be classified by
the type of objective functions, the type of constraints, and whether variables are integer
or continuous (Katoh 1998). An NRA problem is said to have separable objective functions
if the objective function can be written in the form of f (z1, 2o, ..., xn):zyzl fj (z;). Prior
research has shown that the separable convex optimization with linear constraints is not NP-
hard (Chubanov, P016; Hochbanm and Shanthikumar, 1990). In contrast, nonseparable NRA
problems are harder, and generally have no polynomial algorithms (Hochbanml, 2007). Our
problem in its original form has a nonseparable objective function, but can be converted
into a separable NRA problem by introducing additional variables and constraints. The
conversion, however, adds general linear constraints, which are not one of several special
constraint types well studied in the literature (Kafoh and Tharaki, T998). We also note
that even in the case of separable objective functions, neither of the known polynomial
algorithms, except for a few quadratic optimization cases, is strongly polynomial (which
means the running time depends on the data coefficients rather than only on the problem
size) (Hochbaum, 2007). The existence of strongly polynomial algorithms is still an open
question.

In theory, our problem can be solved by any generic convex optimization solvers.® Con-
temporary interior-point solvers such as LOQO (Vanderhei, 1997) and MOSEK (MOSEK],
PO12) are generally quite effective at solving convex optimization programs with linear con-
straints (Baief_all, 1997; Boyd and Vandenberghe, 2004). However, when such problems
have extremely high dimensions, generic convex-optimization solvers are no longer practical,
as observed in the MCF literature (Ouoron ef all, P000). For applications such as display
advertising, we not only need to solve extremely large problems, but also need to solve them

in a timely manner, demanding specialized solution techniques for large scale problems that

9For a comprehensive review of convex optimization, see (Bazaraa ef all, 2006; Boyd and Vandenbergh,
).



take advantages of the special structure of our problem formulation.

This research is broadly related to a few other literature streams on display advertising,
including the ad scheduling literature and the auction literature for display advertising. The
ad scheduling literature is concerned primarily with physically fitting ads into the available
space and time. Though conceptually the ad scheduling problem is connected to the ad
allocation problem in the sense any allocation needs to be scheduled for actual display,
the ad scheduling literature has very different focus from ours. In particular, this literature
focuses more on how to fit ads of different shapes into a shared space for a given audience type
(Adler_ef"all, P002; Kumar ef all, 2006; Deane and Agarwal, 201%), than how to optimally
match advertisements to different audience types. This literature is complementary to our
paper because it tends to consider more nuanced factors , such as exclusion clauses (Wilbu
ef all, P0T13), audience externalities (Wilburef all, 2013) and re-clicking effects (Kumar_efall,
2007). A separate literature investigates the auction approach to display advertising. For
example, Lahaieef all (2008) design an auction framework that permits flexible expression
of advertiser preferences. Chen ef all (2009) examine the issues of how to split the shares of
impressions in a multi-winner ad auction. Lin_and Viswanathan (2014) study the optimal

choice of payment schedules in auctions for display advertising.

3 Problem Formulation

We assume there are M types of goods (e.g., impressions) and N agents (e.g., advertisers or
ad campaigns). We denote the set of agents by A, the set of good types (types for short)

by M. Denoting the quantity of type m allocated to agent i by z;,, € R™, we formulate a

0The number of impressions is typically extremely large in this industry, which makes the continuous
relaxation of the decision variables less of a concern.



nonlinear allocation problem with substitution (NAS) as:

(NAS) maX{xim} Zl/{l ([L’il, L5y oy xzm) = Z Qz Z AimTim (].)

1EN 1EN m

s.t. Zazm < wp, Ym e M (2)
iEN
Tim > 0, VieN, me M (3)

where w,, > 0 represents the total supply of type m, U; (-) is agent i’s valuation for the
portfolio (1, X2, ..., Tim ). The objective function of the NAS problem consists of the sum
of valuations U; () of all agents. The constraints (2) and (B) represent the usual feasibility
and non-negativity requirements respectively. We call ay,,, agent i’s valuation coefficient for
type m. We assume the valuation function Q;(-) to be continuously differentiable, strictly
increasing, and strictly concave for technical convenience.™ Our model and methods are
applicable to other families of increasing and concave value functions.™

We say type m is valuable to agent ¢ if the valuation coefficient for this type is positive
(im, > 0). Because an agent’s valuation has a linear core, the agent considers all valuable
types as substitutes: the marginal rate of substitution is constant and is determined by the
ratio of the corresponding valuation coefficients.

Our approach to modeling agent preference is rooted in the utility function theory in

economics. Utility functions often take a concave form because of diminishing marginal

' The theory and the algorithm we will develop do not depend on the convexity assumption as long as
certain technical requirements are met to ensure global optimality.

12 Another way to generalize our formulation is to allow multiple portfolios per agent in a generalized
valuation function. For example, for an agent who has 8 portfolios .S;1, S;2, .-, Sis, we may define her valuation
as

8
U (x;) = ZQil ( Z Oéima?im> , Vie N. (4)
=1

meS;;

Treating each portfolio as a separate agents, we can clearly solve the generalized allocation problem in the
same way as the original NAS problem. Because the marginal valuation for each portfolio decreases in the
quantity allocated, an agent would prefer an allocation that spreads across multiple portfolios than those
concentrate in one. In other words, such a generalized valuation function can capture the “variety-seeking”
preferences.

10



Meaning

1 index for agent

m index for type of good

N total number of agents

M total number of good types

N the set of agents

M the set of good types

x; = (21, s Tims L Ting) agent ¢’s allocation, with z;, being the quantity of type m goods
allocated to agent ¢

x=(x1,- - ,x,,xn)t the N x M allocation matrix for all agents, where x; is agent i’s
allocation and 7' denotes matrix transpose.

Qim agent ¢’s valuation coefficient for type m goods

W= (W1, " Wy W) total supply of each type of goods, with w,, being the total supply
of type m goods

Qi) agent i’s valuation function

p= (p17p27'” 7pM)

a price vector for the M types of goods

a pseudo price vector for the M types of goods

f) = (ﬁl?ﬁ%”' 7ﬁM)
Z = (217'227“' 7ZN)

the allocation of standardized goods, with z; being the allocation
of standardized goods for agent ¢

-

indicator matrix of dimension N x M whose element I;,, € {0,1}
represents whether agent ¢’s is allowed to have type m goods.

the standardized supply

Oy &

agent i’s valuation function in terms of standardized goods.

>
3

Lagrange multiplier of the supply constraint of type m good (i.e.,
its shadow price).

a scalar used in Example 1 as a parameter of the Q;(-) function.

Table 1: Summary of Notations

returns. When used in a stochastic environment, a concave utility function can capture

agent 4’s risk aversion. Concave utility functions are widely used in insurance and finance

(e.g., Harry M. Markowitz, [959) and have been recently proposed as an alternative to

traditional stochastic and robust programming approaches (Baief all, 1997; Mulvey et all,

[995; Chen_ef all, 2007; Ye_and Yad, ‘ZDIU),

For ease of reading, we list in Table [ the main notations that will be used in the theory

development.

11




4 Theory

The purpose of this section is to better understand the structure of the NAS problem which
will then be exploited to solve the problem efficiently, especially when the dimension is high.™
We prove that it is possible to break down a multi-good problem (i.e., an NAS problem with
multiple types of goods, M > 1) to a series of much simpler single-good ones (i.e., NAS
problems with only one type of good, M = 1), thus providing a foundation for an efficient
iterative algorithm.

The basic idea of our theoretical analysis is to take advantage of the correspondence
between Pareto optimality (PO)™, a necessary condition for optimality, and the existence
of a price vector, under which the PO allocation is optimal for each agent (Theorem ().
We further show that given a price vector, we can reduce a multi-good NAS problem into
a single-good one, a technique which we call standardization (Theorem B). Finally, (The-
orem B) we establish that, in order to find the optimal PO allocation, it is sufficient to
search among regular allocations (Theorem B): finding a regular allocation is much easier
than finding a PO allocation, and any regular allocation has a pseudo price vector which
also allows the standardization procedure. These results paves the way for an efficient al-
gorithm that iteratively searches among regular allocations and solve them efficiently using
the standardization technique.

To our knowledge, no prior work in the transportation literature has established similar
theoretical results for their models. However, as we will discuss, there are interesting analo-
gies between Theorem [ and the first fundamental theorem of asset pricing, between Theorem
2 and the martingale method widely used for financial asset pricing, and between Theorem B

and the fundamental theorem of linear programming that gives rise to the celebrated simplex

130ur NAS problem can be converted into a separable convex optimization problem with general linear
constraints, which is not NP-hard (Chubanaod, 2076). However, due to the high dimensionality of the solution
space, general purpose convex optimization solvers, despite their theoretical efficiency, are not practical for
solving large-scale NAS problems, as our numerical studies will show.

We also use PO as a shorthand for Pareto optimal.

12



method.
We develop these theoretical results in five subsections, starting from the concept of an
indicator matrix which we use to denote a family of allocations . All proofs are available in

the online appendix.

4.1 Graph Representation and Indicator Matrix

As with other transportation problems, our problem can also be represented in a graph where
source nodes are good types, destination nodes are agents, and there is an arc connecting
every source and destination pair. Thus, our problem is also a network flow problem with
the goal of figuring out the optimal flow on each arc.

Instead of allowing flows from every source to every destination, it is useful to study a
restricted problem where only a subset of flows are permitted. The permitted flows can be
represented by an N x M indicator matriz I, whose element I;,,, € {0, 1} represents whether

a flow is allowed from source (type) i to destination (agent) m, that is:
L, =0=2;, = 0, Vz,m

We can define a NAS problem restricted by indicator matriz 1 as:

(RNAS) ey Z Qs (Z ozm:clm)

s.t.inm < wp, Yme M (5)
iEN
Tom > 0,Yi € N, m € M (6)
Tim = 0,Vi e N,m e M, I;,, =0 (7)

The last condition requires the allocation matrix x to have positive values only at places

where the indicator matrix I has “1”7. The three conditions collectively define the set of

13



feasible allocations for the restricted problem.

We use the following example throughout the paper.

Example 1. Consider the following 4 x 4 example with supply vector w = (12,8,6,6) and

exponential valuation functions™
Qi (xi) = v; <1 —e Zizlaimxim) , 1=1,2,3,4

where the parameters v; and the valuation coefficients oy, are given by:

2 0.3 0.16 0.1 0.2
1 0.2 05 0.12 0.05
VvV = s o =
1.5 0.13 0.1 04 0.08
1.2 0.06 01 02 0.3

We consider three indicator matrices for this problem:

1000 1100 1100
0100 0100 0100
I = = =
1010 1010 1011
0101 0101 0101

An NAS problem restricted by I* would allow agents 1 to 4 to have types {1}, {2}, {1, 3},
and {2,4} respectively. I' additionally allows agent 1 to have type 2. 12 additionally allows

agent 3 to have type 4.

We are interested in restricted problems that contain the solution to the original NAS

problem. We call such an indicator matrix an optimal indicator matriz. By definition,

15The exponential valuation function is commonly used in economics and finance to capture an economic
agent’s aversion to variation in consumption levels and the agent’s decreasing marginal utility from con-
sumption.

14



an indicator matrix of all 1’s is always optimal. We are interested in non-trivial optimal

indicator matrices with fewer 1’s.

4.2 Pareto Optimality and Price Vector

Apparently, for an allocation to be optimal, it is necessarily Pareto optimal (PO), which
means that one cannot make some agents better off without hurting others through a real-
location of goods (i.e., no Pareto improvement). Appendix [A=3 provides a formal definition
of PO. We say an indicator matrix I is PO if all feasible allocations in the NAS problem
restricted by I are PO.

The second welfare theorem of economics establishes that there is a correspondence be-
tween PO allocation and the existence of a set of competitive equilibrium prices such that
all price-taking agents would prefer this allocation to any other affordable allocation. We
next show that a similar insight holds for our problem. We first introduce the concept of a

price vector and then show that the existence of a price vector is equivalent to PO.

Definition 1. (Price Vector) A strictly positive vector p = (p1, p2, ..., Par) 1S called a price

vector for (an NAS problem restricted by) an indicator matriz 1 if

Qim

Zp—m, Vie N,m,n € M, such that I;, =1 (8)
Qin, Pn

The price vector captures the idea of “equilibrium” prices in a competitive market such
that if the goods were to be traded at these prices, no agent would find it profitable to do so.
Condition (B) says that agent i can have type m (I, = 1) only if her valuation for type m
relative to any other type (im/aun) is at least as high as the price for type m relative to any
other type (pm/pn). In other words, if there were a decentralized market where the posted
prices were p, the agent would not gain by trading her current allocation for another.

Because re-scaling of p would not affect condition (), the price vector as defined above,

if it exists, is clearly not unique. From now on, we say that a restricted NAS problem has a

15



unique price vector if all of its price vectors are proportional to each other.
The following example shows that a price vector may not exist or be unique for an arbi-

trary restricted problem.

Example 2. Continuing with Example O, it can be verified that, in the case of I*, any vector
p = (13,0,40,3b) with 10 < b < 20 satisfies (B). Hence, the price vector for I* is not unique.
I' has a unique price vector p = (3.9,2.08,12,6.24) One can also prove that, in the case of

12, condition (B) cannot be met, so there is no price vector for 12.™

Theorem [ below establishes the correspondence between PO and the existence of a price

vector.

Theorem 1. An indicator matriz I is Pareto optimal if and only if there exists a price vector

for 1.

The proof of Theorem 1 is technically involved and we refer interested readers to Appendix
A.1 to A.4. We briefly explain the intuition for the proof here. We first establish that PO
is equivalent to the absence of any “profitable” trading cycle where each person in a circle
gives one type of her goods to the next person. In the simplest setting with two agents, 1
and 2, and two types of goods, A and B, any exchange is a trading cycle: for example, agent
1 may exchange 1 unit of type A with agent 2 for x units of type B. The existence of a price
vector (plus the fact that agents 1 has A and agent 2 has B) implies that % > 5—2 > %j;
So if agent 1 finds the exchange profitable (which requires = > %), then agent 2 must
not find it profitable (which requires = < %)7 and vice versa. Hence, there cannot be a

Pareto improvement trading cycle in this setting. Conversely, if the allocation is PO, we

infer that leA > %’ thus we can always find a price vector that satisfies the condition

A T«

% > ;’;—g > %’; Our proof generalizes the basic idea in this simple case to any number of

Q

agents and any number of good types.

0.3 p1 _ 0.13 _ ol ~
m,% = o4 %z = o5 » which togethfer
yield a unique solution to p (up to a scaling factor). In the case I?, row 3 additionally implies B = 813

which contradicts the existing conditions, thus a price vector does not exist.

16Tn the case of I', the 1’s in rows 1,3, and 4 imply that b=
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It is interesting to note that Theorem M has a counterpart in the asset pricing theory,
namely, the first fundamental theorem of asset pricing which states that a financial market
is free of arbitrage if and only if there exists a state-price vector. The analogy has its root

in the connection between PO and absence of arbitrage.

4.3 Price Vector and Standardization

Knowing the price vector is extremely valuable because it allows us to convert multiple types
into a standard type, thus dramatically reducing the dimension of the problem, as we show

in the next Theorem.

Theorem 2. (Standardization) Let I be a Pareto-optimal indicator matriz and p be an
associated price vector. Define the supply w and valuation functions CNQZ(),Z e N, for the

“standard” good as™

W= Z WimnPm (9)

Q; <a”” zl> , Vi such that I;,, =1 for some m

0, otherwise
Let z* be the solution to the following standardized single-good NAS problem
(single-type NAS) maxg,, Z Q; () (11)
ieN
st Y 5<
ieN
Zi Z O, Vi € N

1"Note that @z() is well-defined because for any agent i, when there are multiple m such that I;,, = 1, we
can use any m to define @Q;(-) because the ratio oy, /pm will be same for all different m by (8).
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and x be an allocation restricted by I that satisfies the following system of linear equations™

Y oM., —1 PmTim = 2], Vi € N (12)

Zie/\/,z,.mzl Tim = W, VM € M
The allocation x is a solution to the original NAS problem if it is non-negative.

Theorem B suggests that given a price vector, we can convert multiple good types into a
standard good type. In this standardized economy, the total supply of standard goods is the
sum of all original goods weighted by their prices (equation (d)) and the valuation coefficients
of standard goods are valuation coefficients of the goods divided by their prices (equation
). The system of linear equations (2) allows us to recover an allocation of goods from an
optimal allocation of standard goods. More importantly, if both I and the associated price
vector are chosen “correctly”, the allocation x recovered from the standardized problem is a
solution to the original NAS problem.

In the proof of Theorem B (Appendix A.5), we show that if a PO indicator matrix I
and the associated price vector p are “correct”, then p is proportional to the competitive
equilibrium prices™ , and the scaling factor is exactly the Lagrange multiplier for the supply
constraint in the standardized problem. Thus, an appropriately scaled price vector for an
optimal indicator matrix can also be interpreted as the equilibrium prices in a competitive
market.

It is also interesting to notice the connection between our standardization technique and
martingale pricing method which has become the workhorse in the financial industry over
the last few decades. To see this, we need to interpret the space of impression types as the

sample space (£2) in a probability space and the supply of numerous types of impressions as

18Tt should be noted that the existence of a solution to the system of linear equations (I2) is guaranteed
by a technical result (Lemma 5) in the appendix.

YA competitive equilibrium consists of a price vector and an allocation such that every agent prefers her
current bundle to any other affordable bundle.

18



an asset with uncertain values depending on the realized outcome in the sample space. The
price vector in our standardization theorem, once normalized, essentially defines a martingale
probability measure (P) under which the “standardized” supply is the expected supply (& =
Eplw]). More importantly, under this probability measure P, the value of a portfolio is
completely determined by its expectation under P and agents care only about their expected
allocations. Hence, we only need to allocate goods among agents based on the exrpected
supply and later constructs the actual allocation that is consistent with the expected values
and the supply constraints by solving a system of linear equations.

Being able to reduce a multi-good problem to a single-good one is a significant advantage,
especially for a large-scale problem with numerous types of goods. Theorem B suggests the

following iterative procedure for solving an NAS problem.
e First, we identify a PO indicator matrix I and obtain a price vector.
e Second, we use the price vector to standardize the goods according to (9).

e Third, we solve the standardized single-good NAS problem, which can be done rela-

tively easily.

e Fourth, we obtain a candidate allocation for the original problem by solving the system

of linear equations (I2).

e Finally, we test the optimality of the candidate allocation and if it is not optimal, we

find another Pareto-optimal indicator matrix and start from step 1.

However, there are still several practical challenges. First, it is unclear how to find the first
Pareto-optimal indicator matrix and, if the current one does not produce the solution to
the NAS problem, how to find the next one. Though we have provided a condition for PO
in Lemma B of Appendix [A73, directly verifying PO is far from trivial. Second, deriving
a price vector from a known Pareto-optimal indicator matrix is not straightforward either,

even for simple cases such as Example B. We address these challenges in two steps: first,
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we introduce a new concept called regularity, which overlaps with PO but is much more
computation-friendly; second, we introduce a heuristic matrix search algorithm in Section B
for navigating in the space of regular indicator matrices. The regularity condition is built
upon the notion of connectivity between good types, which we discuss before the concept of

regularity.

4.4 Connectivity Between Types of Goods

As we have mentioned before, an indicator matrix can be alternatively thought of as de-
scribing a network of agents and good types. Types of goods are indirectly connected by
agents who are linked to them. Using this notion of connectivity, we can define a connected

indicator matrix .

Definition 2. (Connected Types) In an indicator matriz I, types m and n are connected

via agent ¢, denoted as m & n, if the agent can have both m and n, i.e., Ijp, = I;;, = 1.

Based on this notion of connectivity, we can define a graph G for each indicator matrix
I using types as nodes and connecting agents as labels. Figure [0 illustrates the connectivity

graphs associated with I*, I', and I? respectively.

1
@—®
(a) I* (b) ! (¢) I2

Figure 1: Connectivity graphs corresponding to I*, I! and I?

Definition 3. (Connected Indicator Matrix) An indicator matriz I is connected if its

graph is connected.

In Example 0, I' and I? are connected but I* is not. When an indicator matrix I is

disconnected, its graph can be decomposed into several connected components. We call
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the set of nodes in each connected component of the graph a connected component of the
indicator matrix I.

Recall that a Pareto-optimal indicator matrix must have a price vector, but as we state
earlier, the price vector needs not be unique. It turns out that when a Pareto-optimal
indicator matrix is connected, the price vector must be unique (that is, up to a scaling

factor).

Proposition 1. If a connected indicator matrix I is Pareto optimal, then the price vector

for 1 is unique.

The intuition for this result is as follows. Whenever an agent owns two types of goods,
the price ratio between these goods will be determined by the agent’s marginal valuations
for them. A connected indicator matrix implies that all goods types are directly or indirectly
connected, and therefore their price ratio are also determined.

As illustrated in Example B, with each component of I* having its own price vector and
scaling factor (i.e., 1 and b respectively for the two components in the example) at the

component level, the price vector for the entire indicator matrix I* becomes non-unique.

4.5 Regularity

Recall that when two good types are connected by an agent, their price ratio is determined
by the marginal valuations of that agent. What if two good types are connected by multiple
agents? It turns out that it implies either sub-optimality or alternate solutions. Regularity
rules out such conditions, and yields enormous benefits for computation.

To motivate the concept of regularity, we first consider a simple example.

Example 3. Consider an example with two agents and two types of goods. Let

U (Xl) =Q ($11 + $12) , Us (Xz) = Qo (9521 + 53322) .
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Consider five connected indicator matrices

I
-

o>
|

Ia

Based on wvaluation coefficients, agent 1 is indifferent between the two types. Depending on

the value of B, agent 2 may prefer one type to the other type or be indifferent between them.

o If B < 1, agent 2 prefers type 1 to type 2. Hence, agent 2 would be better off trading
type-2 good for type-1 good with agent 1 until agent 2 runs out of type 2 (corresponds
to I’) or agent 1 runs out of type 1 (corresponds to I¢). Since agent 1 is not worse off

from this trade, I* is Pareto dominated by I’ or I¢
e If 3> 1, by symmetry, I* is Pareto dominated by I? or I¢.

e If 3 =1, both agents are indifferent between the two types, so we can let one agent
trades one of her types for another until one of the agents runs out one good type
(corresponds to I°,1¢,1¢, or I¢), without affecting any agent’s valuation. In other

words, I* is redundant for the purpose of finding an optimal indicator matrix.

Therefore, regardless of the value of 3, excluding I*, does not sacrifice optimality: for the
purpose of finding optimal allocations, we can focus on I’ through I¢. We note that in I¢, the
two types of goods are connected by two different agents, whereas in I® through I¢, each is
connected by a single agent. We generalize this important insight by introducing the concept

of regularity in the following steps.

Definition 4. (Regular Connection) Given an indicator matriz I, a type m has a regular
connection with a connected component S (m ¢ S) if (a) m is connected to at least one
element of S and (b) all of m’s connections to S are via the same agent.

This generalizes the notion of “connected by a single agent” to one type against a com-

ponent of types.
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Definition 5. (Regular Connected Component) A connected component is regular, if
each type has a regular connection with each of the connected components formed by the

remaining types in this component, after removal of this type.

Definition 6. (Regular Indicator Matrix) An indicator matriz I is regular if all of its

connected components are reqular.

By definition, to check for regularity, we only need to ensure the regularity of each
connected component of an indicator matrix . For a connected component to be regular,
each type in the component must connect to each connected component of the remaining
types via a single agent (but connections to different components of the remaining types
need not be through the same agent). In the examples in Figure I, I* and I' are regular but
I? is not because, for instance, type 4 is connected to component {1,2,3} via both agent 3
and agent 4.

We next show that a regular and connected indicator matrix produces a pseudo price

vector that is closely related to the true price vector.

Proposition 2. Let I be a connected and reqular indicator matriz. Then (a) there exists a
vector p = (p1,P2,-+ ,Pm), called a pseudo price vector, such that for any two connected

types m & n,

= (13)

(b) The pseudo price vector is unique (in the same sense as a “unique” price vector). (c) If

I is also Pareto optimal, then the pseudo price vector is the unique price vector for 1.

The results in Proposition B is quite intuitive. Because the regularity and connectivity
conditions ensure that any pair of goods types are connected via a single chain of agents,
the pseudo price vector as determined by connecting agents’ marginal valuations is unique.

The vector as defined by equation (I3) is “pseudo” because the regularity connection

only speaks about the connectivity, not whether there can be Pareto improvement among

23



connected agents. Proposition B suggests that the pseudo price ratio becomes a true price
vector (and a unique one) when I is not only connected and regular, but also PO.

The pseudo price vector derived from condition (I3) is extremely easy to compute and
is a natural candidate for the price vector. To focus the search among regular indicator
matrices, we must ensure that an optimal allocation resides among regular allocations. Our

next result guarantees this.

Theorem 3. (Regularity) If a Pareto-optimal allocation x is not reqular, then there exists

a reqular Pareto-optimal allocation X' such that all agents are indifferent between x and x'.

The intuition behind this important theorem can be seen from Example B. The basic idea
is that if a Pareto-optimal allocation allows multiple connecting agents (thus not regular), we
can initiate exchanges among these agents without hurting any agent until some agents run
out of their allocated goods. This can go on until we reach a regular and still PO allocation.

Since each Pareto-optimal allocation must have an equivalent regular allocation (Theorem
B), it is sufficient to search among regular indicator matrices. Figure B illustrates the relations
among three key concepts in this section: optimality, Pareto optimality, and regularity.

It is interesting to note that Theorem B plays a similar role in solving NAS as the
fundamental theorem of linear programming does in solving linear programming problems.
The fundamental theorem of linear programming guarantees the existence of a basic optimal
solution, if an optimal solution exists. Analogously, Theorem B ensures that there must exist
a regular optimal allocation.

The following result further shows the practical importance of the concept of regularity

for the algorithm design. The proof is available in Appendix A.6.

Proposition 3. If the indicator matrix 1 is reqular, then there exists a unique solution to
the system of linear equations defined by (I2), where the price vector p is replaced by p, a

pseudo price vector for 1.
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Pareto-optimal allocations A=PNR Regular Allocations

Figure 2: P is the set of allocations that are PO and R is the set of allocations that are
regular. At least one optimal allocation resides in A = PN R.

5 The SIMS Algorithm

Based on the theoretical results in Section B, we develop the SIMS (Standardization-and-
Indicator-Matrix-Search) algorithm which has two major components: the standardization
component that solves an RNAS problem given a regular indicator matrix, and the indicator-
matrix-search component that suggests an alternative regular indicator matrix if the current

one turns out to be not optimal. Next we describe each component in details.

5.1 The Standardization Procedure

Given our results on regularity (Theorem B), the five-step procedure suggested by Theorem
2 can be implemented using regular indicator matrices instead.

Results on connectivity and regularity suggest we can decompose a regular indicator
matrix into connected components. Suppose a regular indicator matrix I has J components.
We denote M; as the set of types of goods within the jth component, A as the set of
affiliated agents (i.e., who are allowed to have at least one type in M;), and I, as the
submatrix of I corresponding to the jth component. We define a sub-problem as allocating
goods of types in M, among agents in N restricted by indicator matrix I;.

Because the indicator matrix I for each sub-problem is connected and regular, we can
calculate the pseudo price vector and use that in place of the price vector in the standard-

ization procedure. Once we have the solutions of all sub-problems, we have a candidate
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solution to the full original NAS problem, because the allocation for each good type (or
agent) is determined by the sub-problem where it belongs. To illustrate this, we continue

with Example @ and solve the NAS problem restricted by I*.

Example 4. Continue with Example 0 restricted by I*. We can rearrange the rows (agents)

and columns (goods) of T* as

1324
1 [100 0]
3 1100 (14)
2 0010
4 100 11|

With the rearrangement, it becomes clear the matrixz has two disconnected components: the
first component consists of agents {1,3} and types {1,3} and the second one consists of
agents {2,4} and types {2,4}. As the first step, we decompose I* into two sub-matrices I
(the top-left component in (Id)) and I; (the bottom-right component). As the second step,
we standardize each sub-problem. Take I as an example. Noting that types 2 and 4 are
connected via agent 4, we calculate the pseudo price vector as ( p,, p, ) = (1,3) because
ays/ayy = 1/3. The standardized supply is @ = 8ps+6py = 26 and the standardized valuation

functions are
Qa(22) =1 — e 2, Qu(zy) = 1.2 (1 — e O15).

The optimal solution for the standardized problem is z5 = 6.7119, z} = 19.2881. By ([2), we

solve the following linear equations

01 3 T | = | 19.2881
1 10 T4 8
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and obtain a solution to the second sub-problem

Too o4 6.7119 0

T42 T4q 1.2881 6

A similar procedure yields a solution to the first sub-problem

11 T13 11.823 0
I31 X33 0.177 6

Putting together the solutions to the two sub-problems, we obtain the following candidate

solution,

11.823 0 0 0
0 6.7119 0 0
0.177 0 6 0

0 1.2881 0 6

Given a candidate solution, it is straightforward to check its optimality using the following

result.

Proposition 4. Let x be the candidate solution assembled from the solutions to the J sub-
problems and A\, be the Lagrange multiplier (or shadow price) for type m. x is the solution

to the NAS problem if x is non-negative and

9Q;

PreEMIUM iy, =

where premiums, is termed as the value premium of agent © for goods m.

Intuitively, condition (IH) ensures that an agent would not prefer goods from a different
component. The value premium captures the extent to which an agent values a type m above
its shadow price A,,,. At an optimal allocation, no agent should have a positive value premium

for any type, particularly for types from a different component. This makes intuitive sense
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because otherwise, we should allocate more to this user until her marginal valuation equals
the shadow price.
To check whether the candidate solution from Example B is optimal, we compute the

marginal valuation matrix Q’'(x) as

_ ol il il | [ 0.017288 0.0092202 0.0057626 0.011525 |
Q'(x) = o3 L9 S L0 _ | 0.0069754 0.017438 0.0041852 0.0017438
g3 s SOs LU 0.017288 0.013298 0.053193 0.010639

| 591 B9 B0u B9 || 010463 0.017438 0.034877 0.052315 |

where the bold-faced elements are Lagrange multipliers A. Noticing that x is non-negative

and there is no positive value premium, we conclude that x is an optimal allocation.

5.2 The Indicator-Matrix-Search Heuristic

The indicator-matrix-search component of SIMS is conceptually independent of the stan-
dardization component because its main purpose is to navigate the space of regular indicator
matrices to reach an optimal one as fast as possible. We propose a heuristic search algorithm
and then implement and test it in the numerical studies. We first briefly describe the basic
idea of this heuristic and illustrate it using a worked-out example. Additional details of the
search heuristic is available in online Appendix B.

We choose the initial indicator matrix I° by naively assigning goods to the agent with
the highest marginal valuation (breaking ties randomly) subject to a quota of M /N for each
agent:

1 if i = argmaxy %}fmo)
L = . (16)

0 otherwise

Because each type can be held only by one agent, I° is clearly regular. Step 2 (graph

decomposition) can be easily achieved by, for example, a depth-first search algorithm.
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Ik

%] x Q (<)
1 0 01 12 0 0 6 0.0049378 0.0026335 0.0016459 0.0032919
0 0100 0 8 00 0.0036631 0.0091578 0.0021979 0.00091578
0010 0 0 6 0 0.017690 0.013608 0.054431 0.010886
0 00O 0 0 0O 0.072000 0.12000 0.24000 0.36000
1 0 01 12 0 0 —3.3893 0.032291 0.017222  0.010764 0.021527
1 0100 0 80 0 0.0036631 0.0091578 0.0021979 0.00091578
0010 0 0 6 0 0.017690  0.013608 0.054431 0.010886
00 01 0 0 0 9.3893 0.0043055 0.0071758  0.014352 0.021527
1 0 00 12 0 0 0 0.016394 0.0087436  0.0054647  0.010929
9 0100 0 8 00 0.0036631 0.0091578 0.0021979 0.00091578
0010 0 0 6 0 0.017690  0.013608 0.054431 0.010886
0 001 0 0 0 6 0.011902  0.019836  0.039672  0.059508
1 000 12 0 00 0.016394 0.0087436 0.0054647 0.010929
3 0100 0 6.7119 0 0 0.0069754 0.017438 0.0041852 0.0017438
0010 0 0 6 0 0.017690 0.013608 0.054431 0.010886
01 01 0 12881 0 6 0.010463 0.017438 0.034877 0.052315
1 000 11.823 0 00 0.017288 0.0092202 0.0057626 0.011525
A 0100 0 6.7119 0 O 0.0069754 0.017438 0.0041852 0.0017438
1 010 0.177 0 6 0 0.017288 0.013298 0.053193 0.010639
0101 0 1.2881 0 6 0.010463 0.017438 0.034877 0.052315

Table 2: An Illustration of the SIMS Algorithm

How to best select the next I is where we use heuristics. Our proposed heuristic crucially
relies on the comparison of value premiums which we defined in Proposition H.

Each time we have a candidate solution, we first check whether there is any negative
element in the allocation matrix. For each negative x;,, (suggesting agent i has low valuation
for type m), we adjust I by setting I, = 0 and solve the restricted problem again with the
new I. If the new candidate solution is non-negative, we adjust I by setting I;,, = 1 where the
highest positive value premium is (suggesting the agent has an “above-market” valuation,

thus should be allocated more) and solve the restricted problem again.

Example 5. We illustrate the matrix searching heuristic of SIMS using Example 1. Table

@ provides the outputs of each iteration.

1. Set the initial indicator matrix I° according to (IH). By solving the problem restricted

by I° as in Example B, we obtain x° and Q' (x°) as shown in the first row of Table 2.
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According to Proposition @, because some elements of Q’'(x°) exceed the corresponding

0

Am (shown in bold in the same column), x” is not optimal. The highest premium is

premiumyy = % —1=108.36. So we set I,4 = 1 and obtain I'.

2. Solve the problem restricted by I' and obtain x! and @’ (x!). Noting x4 < 0, we set

I, = 0 and obtain I?.

3. Solve the problem restricted by I?. The highest premium is premiumyy = 0%001991853768 —1=
1.166. So we set I;» = 1 and obtain I3.
4. Solve the problem restricted by I?. The highest premium is premiums; = 00..00116736994 —1=

0.08. So we set I3; = 1 to obtain I*.

5. Solve the problem restricted by I*. Because x* is non-negative and there is no positive

premium, x* is optimal and we are done.

Interestingly, in many ways, the SIMS algorithm parallels the simplex algorithm. Indicator
matrix in SIMS plays the similar role as the basis in the Simplex method. Each iteration of
the Simplex algorithm lets one variable enter the basis and one variable leave the basis while
maintaining independence of the basic variables. This is analogous to iterating the indicator
matrix by switching one element from 0 to 1 and another from 1 to 0 while maintaining its
regularity. In the Simplex method, the variable with the largest (positive) coefficient in the
objective function is chosen to enter the basis. Analogously, we choose an element with the
highest value premium to switch from 0 to 1.

Geometrically, the Simplex algorithm searches over the vertices of the feasible convex
polyhedron and each iteration pivots from one vertex to an adjacent vertex of the polyhedron.
The SIMS algorithm operates in a similar fashion, but instead of searching over vertices, it
searches over faces of the feasible convex polyhedron and each iteration slides from one face
to an adjacent face of the polyhedron. Such a difference is rooted in the different structures

of the objective functions. For a linear programming problem, the objective function is linear
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and there always exists a solution at one of the vertices of the convex polyhedron. In our
case, the objective function is convex (if formulated as a minimization problem), hence, the
set of optimal solutions and the set of vertices do not intersect in general. Nevertheless,
Theorem B ensures that there always exists a solution at one of the faces characterized by
a regular indicator matrix. In this sense, a regular face is the counterpart of a vertex in a
linear programming problem.

The following procedure summarizes the SIMS algorithm.

1. Find an initial regular indicator matrix I.
2. Construct the graph for I and decompose it into several connected components.
3. For each connected component, construct and solve a sub-problem by

(a) computing the unique pseudo price vector,

(b) solving the standardized problem, and

(¢) recovering the solution for the sub-problem using (7).

4. Combine solutions to sub-problems to form a candidate solution for the whole NAS

problem.

5. Check whether the candidate solution satisfies (i) x > 0 and (ii) premiumy,, < 0, Vi, m.

(a) If yes, then we have found an optimal allocation.

(b) If no, choose another regular I and go back to Step 2.

Algorithm 1: The Standardization and Indicator Matrix Search (SIMS) Algorithm

5.3 Numerical Studies

We use three sets of numerical simulations to study the performance of the SIMS algorithm.

In the first set of simulations, we are mainly interested in the convergence behavior and
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scalability of SIMS. In the second set of simulations, we compare SIMS to generic convex
optimization solvers. In the third set, we conduct a more realistic simulation of display

advertising problem, and demonstrates the applicability of SIMS for this problem.

5.3.1 Performance and Scalability

In the first set of simulations, each agent’s valuation function takes an exponential form
which we have used in earlier examples. The coefficient v; are independently drawn from the
uniform distribution in the interval [1000, 10000] and the coefficients of «;; are independently
drawn from the uniform distribution in the interval [0.1,1.1]. The supply of each type of
good is randomly generated according to a binomial distribution with 10 trials and a success
probability of 0.4.

We first show that SIMS can effectively solve large-scale NAS problems and demonstrate
its fast convergence. Thanks to the form of the valuation functions, we can obtain a strict
upper bound for the objective®™, which is useful for studying the convergence behavior of
SIMS. We fix the number of agents to N = 1,000 and gradually increase the number of
types from M = 5,000 to M = 50,000. Because an increase in M naturally makes the
allocation problem “easier” to solve due to the increase of supply, we scale down the supply
vector proportionally as we scale up the value of M. This makes the convergence processes
corresponding to different values of M more comparable. For all these examples, the strict
upper bounds of objective values are in the interval of [5824870.03, 6180232.48]. Figure B
plots the simulation results. The plot on the left shows the objective value at each iteration
for M = 10,000, which quickly approaches the upper bound. This suggests that SIMS can
find an approximately optimal allocation within a few hundred iterations, which is highly
valuable for practical purposes. The plot on the right further characterizes the convergence

behavior of SIMS in terms of the number of iterations it takes to converge to 99.9999999%

20Because Q;(x;) = vi(1 — 6*2%:1%”‘”1'7”), one theoretical upper bound for the objective function is

Q = Ei]\ilvi.
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Figure 3: Convergence of SIMS

of the upper bound of the objective, and the average number of seconds it takes to complete
one iteration. It might seem surprising that the number of iterations required to obtain an
approximately optimal solution decreases as we increase M. This phenomenon is driven by
two factors. First, a larger value of M implies more optimal regular indicator matrices, hence
more paths to optimality; Second, the initial indicator matrix we choose is more refined when
M is larger. Due to these two countervailing forces, the total amount of time does not change

dramatically as we increase M. These numerical results suggest that SIMS is quite scalable.

5.3.2 Performance Benchmark

Given that our problem is a convex optimization problem, it is useful to compare the speed
of SIMS with a generic convex optimization solver. We choose three popular convex opti-
mization packages: MOSEK, CVXOPT, and LOQO. MOSEK is a well-known commercial
software for solving large-scale mathematical optimization problem using the interior-point
method. A recent survey compares MOSEK favorably to CPLEX, another leading commer-
cial software for convex optimization Ben-Tal'and Nemirovski (2001). CVXOPT is a free
python-based convex optimization software developed at UCLA, and LOQO is a commercial
optimization software developed at Princeton University for smooth constrained optimization

based on an infeasible, primal-dual, interior-point method.
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We note that the interior-point method used by most commercial software requires the
construction of the Hessian matrix during each iteration, which has a memory requirement
in the order of O((N M )2) In contrast, the memory requirement for SIMS is in the order
of O(NM) because all relevant variables during each iteration have the same dimension as
the allocation matrix, which is N x M. This implies commercial software such as MOSEK
will have troubling fitting an exceedingly large problem into the memory. For this reason,
we cap the problem size for MOSEK at N = 100 and M = 5000 so that it can finish within
reasonable amount of time and the memory requirement.

We first compare the speed of MOSEK and SIMS by setting N = 100 and let M vary
from 500 to 5000. The left panel of Figure B compares the time used by each software.
Clearly, SIMS outperforms MOSEK when the scale of the problem is large. To compare
the performance of SIMS with CVXOPT and LOQO, we further reduce the scale of NAS
problems so that CVXOPT and LOQO can run properly. In particular, we set the number
of agents to NV = 50 and increase M from 50 to 100 at a step of 1. The right panel of Figure
A compares the time used by each software. Clearly, the performance of SIMS is far superior

to CVXOPT and LOQO.

350 4000
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300 b SIMS (in seconds) ------- 3500 | LOQO (in second)
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Figure 4: Comparison of SIMS with MOSEK (left panel), and with CVXOPT and LOQO
(right panel). The number of advertisers is fixed to 100 in the left panel and 50 in the right

panel.
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Based on these numerical experiments, we believe that SIMS has significant advantages
in speed and memory requirement that make it particularly useful for solving extremely
large-scale and/or time-critical problems: First, speed comparisons in Figure @ suggest that
for problems of large sizes, it would often take the standard algorithm hours to solve while it
only takes SIMS a few seconds to solve. Second, because the memory requirement in SIMS
is O(NM) compared with O((NM)?) for most generic interior-point solvers, SIMS can solve
much larger problems on commodity hardware, which by itself can justify the use of SIMS

over generic convex optimization solvers.

5.3.3 Application to Display Advertising

To validate the applicability of the SIMS algorithm in real-world problems, we simulate a
display advertising problem and use SIMS to solve them. Simulation methods have been
used to test other algorithms for display advertising (Turned, 2012; Deza ef all, POT5). In
display advertising, we re-interpret “agents” as ad campaigns to reflect the fact that each
campaign has its own goals and preferences. Following Zhang et al] (2014), we assume that
the each ad impression is characterized by K binary features (e.g., male/female, day/night,
high income/low income, etc), resulting in 2% total impression types. We also assume each
campaign may target a small subset set of impression types, and different campaigns may
use different features for targeting (e.g. one campaign may target gender while another
may target income level). We discuss how we simulate supplies, targeting criteria for each
campaign, and valuation coefficients below.

First, we let the number of features K = 14, resulting in 16, 384 distinct impression types.
Following Turner (2012), we use Pareto distribution to account for the fact that supplies are
disproportionately large for some impression types. Specifically, for each impression feature,

we draw two numbers, py and p;, from a Pareto distribution with minimum 0, mean 1,

and shape parameter 5. We then let ¢ = plilpo be the probability of getting 1’s for this

feature, and ¢y = 1 — ¢; for getting 0’s. We further assume that the probability of drawing
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an impression type with feature vector f = (f1, fo, ..., fx) is P(f) = q}lqi...qﬁ, where q’}k
is the probability of drawing fi € {0, 1} for feature k. We conduct random draws according
to P (f) to obtain the total supply of impression types.

Second, to simulate campaign targeting, we first draw a number k; from a Poisson distri-
bution with parameter 2 to be the number of targeted features. We then randomly choose
k, features out of K as targeted features. For each targeted feature k, we let the targeting
criterion be fy = 1 with probability ¢f, and f; = 0 with probability g&.

Finally, after simulating the targeting criteria for each campaign, we simulate the val-
uation coefficients for those targeted impression types. Assuming an exponential valuation
function with parameters {v;} and {a;,,}, we randomly generate {ay,,} for targeted impres-
sion types using a truncated normal distribution with mean 0.5, standard deviation 0.2,
and min/max of 0.1 and 1 respectively. The coefficients are then scaled by a factor of 0.01
to make the optimization problem difficult enough®™. Furthermore, to mimic the fact that
campaigns have different budget levels, we simulate the coefficients {v;} by drawing from a
truncated normal distribution with mean 0.5, standard deviation 0.2, and min/max of 0.1
and 1 respectively, and then scaling it by a factor of 10,000 to reduce floating-point numeri-
cal error although mathematically the scaled problem is essentially equivalent to the original
one.

An upper bound of the NAS problem corresponding to this simulated real-world example
is 5026061.52. SIMS solved this NAS problem in 446.945 seconds (roughly 7.5 minutes) with
objective 5026061.519957. On the other hand, MOSEK failed to solve the problem within
100,000 iterations after 944904 seconds (roughly 11 days). The comparison suggests that the

advantage of SIMS over MOSEK is enormous in more realistic scenarios.

21To see this, imagine the extreme case when the coefficients a;; are extremely large. A trivial optimal
allocation is to allocate enough supply to each campaign one by one so that its valuation approximates the
upper bound (i.e., v;). In general, the difficulty level of the problem increases with the scale of supply and
the scale of the coefficients.
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6 Implications for Online Display Advertising

By solving the NAS problem, we can obtain several types of outputs: the price vector
scaled by the Lagrange multiplier of the standardized problem, an optimal allocation, and
a decomposition of the allocation matrix. The decomposition tells DSPs which audience
categories and advertisers (ad campaigns) should be considered together. In the following,
we focus on the implications of our two most important outputs: the price vector and the

optimal allocation.

6.1 Implications of the Price Vector

We obtain a price vector as a by-product of the NAS problem, but because our model is
rooted in economic theory, it has an intuitive economic interpretation and can be used in
different ways. First, the price vector, as market clearing prices, can be used to determine a
set of internal prices for DSP — if DSPs were to charge these prices, advertisers should have
no incentive to move away from the optimal allocation. Second, because the price vector has
a shadow price interpretation, DSPs can use these prices to decide whether it has too few or
too many impressions for each audience category. For example, if the internal price for an
audience category is higher than its market price, the DSP should consider buying more of

such impressions.

6.2 Implication of the Optimal Allocation

A second, and probably more direct, application of our theory and algorithm is to guide
the scheduling of display ads for DSPs. Our NAS problem can be part of the “optimize-
and-dispatch” style ad scheduling system (Parkes and Sandholmi, P005), where the first step
is to solve an optimal NAS problem that produces an impression target for each campaign
and audience category. Then an online dispatcher allocates incoming impressions one by one

towards the impression targets. We briefly discuss below how the SIMS algorithm could be
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used for ad scheduling, including how to adapt to supply uncertainties.

Consider an environment where impressions arrive in a stochastic fashion over horizon
[0,7]. We assume that there is an initial forecast about the total supply for each audience
category and subsequent updated forecasts. Let w' = (w!, wt, ..., w! ) be the forecasts for the
total supply of all audience categories at time ¢. A general optimize-and-dispatch approach

to ad scheduling can unfold like this:

1. (Initial optimization) Solve the NAS problem for the initial forecast w® and obtain the

initial optimal terminal allocation (i.e., the target number of impressions at T) x° .

2. (Incremental optimization) At period ¢, if the forecast stays the same (w! = w'™!),

t—1

we use the same terminal allocation x' = x Otherwise, we recompute x' as the

solution to an NAS problem with the updated forecast w?.

3. (Dispatch) Allocate impressions upon arrival so that total allocated impressions are

proportional to x! as much as possible.

Provided that the updated forecasts converge to the actual total supply as t — T', the above
optimize-and-dispatch procedure will approximate the optimal terminal allocation of the
final NAS problem.

Now, what if the supply forecast changes? We believe that a SIMS-powered ad scheduling
system can adapt to changing supplies fairly quickly. First, because an indicator matrix is
optimal for a wide range of supply vectors, as long as the new forecast does not deviate
much, we may not need a new indicator matrix. The only thing we need to do is to re-solve
a standardized NAS problem using the updated supply vector (steps 3-4 of Algorithm 1),
which can be done very efficiently. Even when the new forecast calls for a new indicator
matrix, we need not start from scratch because of the iterative nature of SIMS. We may
simply iterate from the current indicator matrix still we reach a new optimal indicator
matrix. Because the SIMS algorithm is shown to be very fast in our numerical experiments,

such incremental iterations can be done fairly frequently (e.g. every 15 minutes) .
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To further improve the real-time performance of the SIMS algorithm, one may compute
multiple probable supply scenarios ahead of time and store the solutions for later use. The
SIMS algorithm permits us to store only the optimal indicator matrices and the associated
price vectors, which can be combined with the supply forecast to quickly obtain the optimal

allocation by solving a standardized NAS.

7 Conclusion

Motivated by real-world applications of online display advertising, we propose a unique class
of allocation problem (NAS) where agents have concave value functions and different sub-
stitution preferences across numerous types of goods. Viewed as a transportation problem,
our formulation permits greater flexibility in modeling agent preferences than existing trans-
portation models because we allow multiple types of goods and agents to have heterogeneous
rates of substitution for these goods.

Drawing upon the economic concept of Pareto optimality, we develop a theory and design
an algorithm for solving NAS problem. The SIMS algorithm iterates through specially
constructed indicator matrices each of which permits fast solution via a combination of
decomposition and standardization techniques. Our simulation results show that SIMS runs
up to three orders of magnitude faster than generic interior-point nonlinear solvers. Our
theory has interesting connection with the martingale methodology used in asset pricing
while our algorithm is connected to the Simplex algorithm for linear programming problems.

This research has its limitations that warrant further research. We have focused on non-
physical goods and abstracted away transportation costs. It would be interesting to combine
our problem with a transportation problem in a similar manner as (Sharp et all, T970). We
have used exponential valuation functions for numerical experiments, it would be interesting
to evaluate and compare the performance of SIMS under alternative valuation functions. So

far, we have relied on numerical studies to establish the performance and scalability of SIMS.
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Future research could establish the complexity of SIMS. Once we have a regular indicator
matrix, solving the corresponding single-good problem and verifying its optimality can be
done quickly in polynomial time. We conjecture the iteration over regular indicator matrices
to have similar complexity as the iteration over vertices in the Simplex method, which is
known to be exponential in the worst case but nevertheless takes polynomial time in practice
(Spielman and Teng|, 2004).

This research can be extended in several ways. First, the current matrix search algorithm
we use in SIMS is by no means the most efficient one and we believe it can be further improved
with better heuristics. Because matrix regularity is an inherent property of any binary
matrix, we hope future research on regularity can lead to powerful matrix search algorithms.
Second, as we indicate in footnote [, SIMS is applicable even if the objective functions are
not concave. Its performance under non-concave objectives and comparison with generic
nonlinear optimization software are promising directions for further study. Third, it would
be interesting to both theoretically and numerically compare the SIMS algorithm with a
recently proposed algorithm (Chubanov (2016)) for separable convex optimization problems.
Finally, it would also be appropriate to extend our problem to a stochastic setting. Extensive
research has been done on decision under uncertainty using stochastic programming (Shapird
ef-all, P009; Sahinidis, 2004) and robust programming (Baief all, 1997; Mulvey et al], T995).
It would be interesting to explore the utility of our framework for dealing with resource

allocation problems with heterogeneous preference for uncertainty.
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Appendix

A Technical Results and Proofs

A.1 General Conditions for Optimality

Proposition 5. An allocation x is optimal if and only if x satisfies constraints (2) and (3),

and there exists a Lagrange multipliers vector X = (A1, Ag, ..., Aar) such that

Tim > 0 = 22000 —
" . Vi,m (17)

Proof. We form the Lagrangian as follows:
LYY amta) + 3 A (wm - zm> Y S
ieN mem meM ieN meM ieN

The first order condition for z;,, is

9Q;

8xim

If Zim, > 0, ftin = 0 and thus 29 = \,,. If 2, = 0, f1y > 0 and thus 22 < ), W



A.2 Solving a Single-good NAS Problem

We solve a single-good NAS problem (i.e., M = 1) here. With only one type of goods, x;,

a;, and w become scalars. We define

v, = Qi0), Vi (18)
Q;_l (y) ) Zf Yy S U;
di(y) = (19)
0, otherwise
ieN

where Q}(-) is the derivative of Q;(-).
One may interpret v; as i’s dropout price, or the price at which i’s demand drops to zero

and interpret d; () as ¢’s (inferred) demand function. Without loss of generality, we assume
U1Z’UQZ"'ZUNZO. (21)

By this construction, wy is the aggregate demand (of the first £ — 1 agents) at k’s dropout

price and 0 = @, < @y < ... < Wy.

Proposition 6. The optimal allocation is uniquely determined via
v =d;(\),Vi e N (22)
where the Lagrange multiplier A\ > 0 is the unique solution to
W= Zdz()\) (23)

Furthermore, when w € [Wg, Wit1], A €[Vk41, Uk

Proof. By construction, the conjectured optimal allocation is feasible provided that the so-



Input:

e The total supply w and valuation functions {Q;} and marginal valuation functions
{Q;} in either functional or numerical form.

Steps:
1. Compute {v;} and re-index agents according to (E1).
2. Compute {wy} as defined in (20).
3. For w € [Wg, Wg+1], compute A as the solution to (Z3) on the interval [vy1, vg].

4. Output the optimal allocation x as defined by (22).

Algorithm 2: Optimal Allocation for single-good NAS

lution to (E3) exists. We only need to show that the condition in Proposition B holds. We

first check that (Z3) indeed has a solution A. Suppose w € [, Wrr1] (Let vy = 0 and

ON41 = D ien di(vn41). We have

N

Zdi(vk) Sw< Zdi(vk—o—l)-

=1

Now because Zf\il d;(+) is a monotone decreasing function, by continuity, there exists vy <
A < v, such that w = Zf\il d;(A). By Proposition B, the proposed solution is optimal if and
only if Q}(&;) = A holds for i < k and Q}(&;) < A holds for ¢ > k. For i < k, by construction,
Q&) = A\, and for i > k, & = 0, so Q}(&) = v; < v < A. Therefore, our proposed allocation

is indeed optimal. M

Based on Proposition B, we develop Algorithm B for solving the single-good NAS prob-
lem. It should be noted that this algorithm does not place any restriction on the form of
valuation functions as long as they are strictly increasing and strictly concave. These valu-
ation functions do not have to take any explicit functional form and could be numerically

derived from empirical data.



A.3 Define Pareto Optimality

In this section, we formalize the concept of Pareto optimality. We define Pareto optimality
(PO) in terms of lack of Pareto-improving trades. A trade is a reallocation of goods among
agents.

Let T (x) denote the allocation after a trade T is executed on allocation x.
Definition 7. A trade T is feasible on allocation x if and only if T (x) is non-negative.

Definition 8. A trade T is profitable if u; (T (x)) > u; (x),Vi € N and at least one strict

inequality holds.
Definition 9. A trade T is profit neutral if u; (T (x)) = u; (x),Vi € N.
Definition 10. A tradeT is unprofitable if there exists i € N such that u; (T (X)) < u; (x).

Definition 11. (Pareto Optimal) An allocation x is Pareto optimal if none of the feasible

trades on X is profitable.

A.4 Conditions for Pareto Optimality

In this section, we prove the condition (B) is a necessary and sufficient condition for PO.
We need the following definitions and lemmas. In the following, we use (iy,is,...,ix) toO
denote a sequence of K agents, where 7, denotes the index of the k-th agent in the sequence.
Similarly, we use (mq, ma, ..., mg) and (€1, €s, ..., €x) to denote the corresponding sequences
of good types and quantities respectively. For notational convenience, we also define a 0-th
element of the sequences as a “double” for the M-th element (so that ig = ix, mo = mg,
and €y = €k ), and the (K + 1)-th element a “double” for the 1st element (so that ix.; = 44

and mg1 = my).

Definition 12. A circular trade is a trade between a sequence of K > 2 agents (iy,1g, ..., i)

with good types (my, ma, ...,my) and quantities € = (€1, €, ..., €x) such that for each k = 1..K,



agent iy, gives € units of type my, to agent ix,1 (note that we define i1 = 1iy). We denote

a circular trade as (C,€), where
C = ((iluml)a(i27m2)7"'7(iK7mK))7 (24>

describes a trading cycle, i.e., a sequence of agents and good types involved in a circular

trade and € describes the trading quantities.

Definition 13. We say a trading cycle C is feasible (profitable, profit-neutral, unprof-
itable ) if there exists a trading quantity vector € such that the circular trade (C,€) is feasible

(profitable, profit neutral, unprofitable).

Clearly, C' is feasible on x if and only if
Tipm, > 0,VEk =1..K. (25)

The following result provides a criterion for a profitable (profit-neutral, unprofitable) trade

cycle.

Lemma 1. A trading cycle C' as defined in (E4) is profitable (profit-neutral, unprofitable) if

and only if
K

K
QG my, ; Haikmk_l (26)
1

k= k=1

Proof. (“profitable”) We prove the “if” part by construction. Consider the following circular

trade: for each [ = 1,--- | K, let agent i; give Hi::l LrmE-1 ynits of type-m; to agent i;.

Xipmy

The valuation of agent i;, [ > 2, after receiving some type-m;_; goods from agent 7;_; and



giving some type-m; goods to agent 7;,1, is given by

M -1 l
l I aikmk,1 | | aikmkfl
Qil E ailmxilm + ailml,1 - ailml

m=1 o1 ik jm1 ik

M -1 o o -1 o

§ : l | UMk —1 1my—1 l | UMk —1
= Qil Oéilmxilm + Oéilml,1 0 - ailml o : 0

m=1 k=1 = kM Wmk g=1 TR

M
= Qil E ailmxilm
m=1

so agent 4; is indifferent after the trade. The valuation of agent i; is given by (note that this

agent receives type-myg goods from agent i)

M K (07 «
2 : | I UMk —1 1M K
Qil ailmxilm + ailmK - ailml
m=1 he1 ik YXiymy

M K o
2 : LM —1
- Qi1 ailmxilm + ailmK H -1
m—1 o1 ik
M
> Qi E Qi mTiym
m=1

So agent 71 is better off after the trade, suggesting a profitable trade on the trading cycle C'.

We now prove the “only if” part. We suppose a circular trade (C, €) is profitable. Without
loss of generality, we assume that i, is better off from the two adjacent trading steps (i.e.,
receiving €y units of my from ix and giving €; units of my to iy) and agents at all other

nodes are not worse off from their two adjacent trading steps, namely,

€K iyme > €10m, (27)

€h1Qipmy_y > €kQligm,, VK = 2. K (28)

Multiplying two sides of (24) and (E8), we have

K K

H Ek—laikmk,1 > H Ekaikmk

k=1 k=1



which implies (28).
The proof for the profit-neutral condition is analogous to that for the profitable condition
and thus omitted. The condition for unprofitable cycles follows immediately from the two

previous results. W

Example 6. Continue with Example . Consider a “naive” allocation that solves an inde-

pendent optimal allocation problem for each type of goods. We obtain the following allocation

5.4368 5.0289 1.3382 3.8107
2.6622 2.5018 0 0
3.9009 0.4693 3.0811 0

0 0 1.5807 2.1893

Given x°, the trading cycle C = ((1,2), (2,1)) is feasible and profitable. It is feasible because

12, Xo1 > 0. It is profitable because ey = 0.032 < 0.15 = a1 by Lemma .

Lemma 2. Denote C~' as the counter cycle for C (i.e., C in reverse trading directions).
If a trading cycle C is profitable (profit neutral, unprofitable), then its counter cycle C~1 is

unprofitable (profit neutral, profitable).

Proof. By Lemma [, the condition for C~! to be profitable (profitable neutral, unprofitable)
is

K K

k=1 k=1

The results in Lemma B follows immediately from comparing (E8) and (29). W

Lemma 3. An allocation is Pareto optimal if and only if there does not exist a feasible and

profitable trading cycle.

Proof. We argue that given an allocation x, there is a profitable trade if and only if there is

a profitable trading cycle. The Proposition follows naturally from this argument.



The “if” part is obvious. So we only show the “only if” part. First, it is without loss of
generality to focus on profitable trades in which each agent both gives and receives. To see,
if an agent gives without receiving, the agent is worse off and cannot be part of a profitable
trade. If an agent receives without giving, we can drop the agent, return what the agent
receives, and obtain a new profitable trade.

Second, given that each agent both gives and receives in the trade ¢, it always contain
a trading cycle. To see, we can start from any agent ¢ in ¢ and trace to someone who
receives from ¢. Because the number of agents is finite, eventually we will reach an agent
that we have previously encountered, thus we have a trading cycle C' that is feasible under
allocation x. If C is profitable, then we have our result. If not, C~! must be profit-neutral
or profitable (Lemma B). So we can find a circular trade (C~', ¢) which (a) is profitable or
profit neutral and (b) involves each receiver on the trading cycle C' returning a portion of
the received amount to the sender and at least one receiver returns all the goods received
on C. We can then define a new trade ¢ that combines ¢ with (C~!,¢). (a) implies that ¢
is still profitable and (b) implies that ¢’ is still feasible but no longer has the cycle C. (b)
also implies that no new trading step, and hence no new cycle, is introduced because of t'.
Repeating this procedure with ¢/, there must be another cycle on ¢’ that is either profitable
or can be eliminated (without adding new ones) in a new feasible and profitable trade t".
Doing this repeatedly, eventually, we either find a profitable cycle or there is no cycle left.

The latter is impossible by our earlier argument. W

Lemma B implies that we only need to check all feasible trading cycles to know if an
allocation is PO.

Proof of Theorem 0

Proof. “If”: We will show that given (B) all feasible cycles are unprofitable. Consider any

trading cycle C' = ((i1,m1), (i2,m2) , ..., (ix, mx)). If C is feasible, we must have I; ,,,, =1



for all k =1,..., K. By (B), we have

K K
aikmk > pmk

k=1 aikmk—l k=1 pmk—l

We note that p,,, = pm, by our notation convention, the right hand side is equal to 1, which
implies that C' is not profitable (Lemma ).

“Only if”: For a given PO indicator matrix I, we need to show the existence of a strictly
positive vector p = (p1,ps, -, py) satisfying (8). Before we show this, we first define, for

any 1 <m <M, 1<n< M, m#n,

K
aZ mMEg—1
L = max T my =m,mg =n, I; =Iim, - =1; =1 30
mn 9<K<M Oéikmk ) K y Ligmy 12Mmo TKMEK ( )
K—-1 o
. ikmk
H,, = ,Jnin — = my =m,mg =0, Lijm, = Ligmy -+ = Lijome = 1 ¢ (31)
A 1 Qipmp g
and L, = Hopm = 1.

1) We claim that a vector p satisfies (B) if and only if

1-1) To see (B2) is necessary, consider L and Hyy as an example. Let (i1,my), (i2, m2) ,...,(ix, M)
be a sequence of agent-type pairs (K > 2) such that m; = 1, mg = 2, and I;,,,, = 1,Vk =
1,---, K. Then the following inequalities are required by (B):

ailml
’

aigml

< Pmy
aigmg me ailmg
< Pmay

Qizms Pms QXiyms

IA

aizmz
)

aigmg

IN



Qigmp_1 < Py < Qig_ymy_q

Y

aiKmK me OéiK,lmK
So p1/pe must satisfy:
K K-1
Bumcs < P P, o TT Qi (33)
g ikm P2 Pmy i1 Yikmii

Because (B3) must hold for any such sequence, we must have (82) for L,,, and H,,, defined
by (B0) and (B1).

1-2) To see (B2) is sufficient, consider a vector p that satisfies (82). To show condition
(B) holds, consider a sequence of agent-type pairs (i,m), (j,n) such that I, = I,, = 1. By

definition of H,,,,

By (82),

Therefore, (8) holds.

2) We now show that there always exists a vector p = (p1,p2, ..., par) that satisfies (B2).
We show this in three steps.

2-1) We first show that L,,, < H,,. We show Ly < Hps as an example. Without loss

of generality, we assume

Ko K-1
LMk —1 R
L =]] e =1 o

jmo ik k=1 = UMit1
for two sequences (i1, m1) , (i2,m2) , ..., (ix, mg) and (il,ml) , (2'2, mg) N (if(, fzf() such that
where my =my =1, mg = mg =2, ljm, = Lfork=1,.. . K,and I; ; =1fork=1,.. K.

K K-1

H Oéikmkfl < H aik’ﬁlk

k=2 Qi k=1 SR

10



or

K K-1 K K-1
Haikmkfl H Oy S H Qigemy, H X,
k=2 k=1 k=2 k=1

is guaranteed by Pareto optimality and Lemma 0 for trading cycle

(ig,’ﬁlg) s (Z'Q,mg) g eensy (iK, mK) s (%K_l,mk_l) g ey (ig,mg) s (’il, Thl) .

2-2) We next show

Without loss of generality, we assume

K-1 K-1 o
. isMs o 141
Hmk’_Haim aHkn_H _
s=1 sMs+1 t=1 LtMt41
for two sequences(iy, my) , (12, ma) , ..., (ix, mg) and (gl,fnl) , (%2,7712) e (ER, rhk) such that
my=m, mg =k, mi =k, mg=mn, Li;ym =1Vs=1,---  Kand [; ;, =1,Vt=1,--- K.
We denote the combined sequence (i1, mq), ..., (ix—1, Mmg_1), (El, Thl) yees (%k,mf() as
(hla ll) ) (h27 l2> PRERY) (hKJrf(fD lK+f(71)
with [y =m and g 7 =n.
By the definition of H,,,, we must have
K+K-2 o K-1 K-1 o
Hmn S H bt = Lol u = mkan
t=1 ahtlt+l s=1 Oéisms-!—l t=1 Oégtﬁlprl
Apparently, we have
Ly = HL, (34)

which directly implies L., > Lk Lin.

2-3) Now, we can show that there must exist p such that p,,/p, € [Lyn, Hmn] for m,n €

11



{1,---, M}, We show this by constructing p element by element. p; can be trivially set to any
value, say 1. We suppose that we can find py, p, -+, pr_1 such that p,,/p, € [Limn, Hmn] for
m,n € {1,---  k —1}. By adding px, we have additional constraints (notice that constraints

on p,,/px are redundant given (B4)):

m

or equivalently,

m:]-v 7k_1} Spkgmln{pmHkm

max{mekm mzl,---,k—l}.

pr exists unless

m=1,--- ,k—1}>min{pmHkm

max{mekm m=1,--- ,k—l}. (35)

Without loss of generality, we assume

m=1,---k— 1} = psLis and min {pmHkm

max {mekm m=1,-- ak - 1} :ptHkt~

for some s,t € {1,..,k — 1}. (B3) is equivalent to

But this is impossible because ps/p; < Hg. So by induction, we can construct all elements

of the price vector p. In other words, there must exist a price vector.

12



A.5 Standardization

Proof of Theorem 2

Proof. Given x solves (I[2) and x is non-negative by assumption, we only need to show that
x satisfies ([C7) for it to be the solution to the original NAS problem.
Denote the Lagrange multiplier of the standardized problem as X. Because z* is a solution

to the standardized problem, we have

7 >0= 5% = A
=5 (36)
Z=0=9% <]
¢ zi:zZ
Withp = < D1, D2, s DM ) being the price vector, we show that the vector <Xp1, ng, e XpM>

satisfies the conditions in (I7) and is the Lagrange multiplier of the original NAS.

First, we notice that if I;,, =1,

Aim Aim, *
E Ty = E ayxgly = p_ E il = p—ZZ
m

leM leM ™M lem

where the first equality is because we always have x; = 0 when I;; = 0 and the second
equality is because ‘;’—Z = % for any [ such that I;; = I, = 1 by the definition of a price

vector.

If I;,, = 1, then by (ID),

] Aim, Mim Aim
= Q; i | = Q; Zailﬂfu .
‘Zi:Z; pm pm pm

lemMm

We discuss the following two cases with I;,, = 1.

13



(a) If x;, > 0, then z; > 0. Hence,

8@1 Oézm aéz N
(%Cim = zmQ (Z azlle) - pm (Z azlle) - 8_21 B *: pm)\
leM leM 2=%
(b) If x;, = 0, then, similar to (a), we have
an / alm a@l N
@:Eim = aiin (Z ailwil> = pm <Z azlle> = DPm 821 = pm>\
leM leM 2=2z;

where the inequality is due to (B3).

If I;,, = 0, then there must exist n € M and n # m such that I;,, = 1. We have

T e T
where the first inequality follows directly from the previous case and the second inequality
is from the definition of the price vector and the fact I;, = 1. Hence, 0Q;/0z;, < me holds
for any x;, = 0. By Proposition B, x is the solution to the original problem and the vector
<Xp1, ng, o XpM) is the Lagrange multiplier for the M supply constraints.

Note in the above proof we have assumed the existence of a solution to the system of
linear equations (I2). This is a valid assumption although the proof is more involved and

requires the concept of regularity. We refer interested readers to Lemma 5. N

A.6 Regularity
Proof of Proposition M

Proof. Without loss of generality, we show that p; /ps is uniquely determined if I is connected.
From the proof of Theorem [, we know p;/ps lies in the interval [Lyo, H12] where Lis and
Hi, are defined in (BO) and (BT) respectively.

By connectivity, there exists a path m; <> mg, ma & mas, ..., Mz < My, connecting

14



my; =1and mpy, = 2.

Because [ilml = Ii2m2 = e e e — [Z'LmL == 1,
ai1m1 ai2m2 Qipm
Hiy < : ——
Qiymy  Oligmg Qipmp
Because Ijymy, = ligms =+ = Liym, ., = 1,
Q; mi ai2m2 QXipm
Ly > ——- .
ai1m2 aigmg aiLmL+1

Hence, we must have p;/py = Hio = L1;. W
Proof of Proposition

Proof. We prove (a) the existence and (b) the uniqueness of the pseudo price vector by
construction. We start with an empty set My = (), and gradually add good types into it
until we include all good types. Along this set expansion, we define the pseudo price for
each newly included good type. We first add good type m; and set p,,,, = 1 to normalize

the pseudo price vector to be constructed. By connectivity of I, there is another type, say

mg, that is connected to My via an agent, say i;. We let pr, = Py

ai:? so that (I3)
trivially holds by this very construction. Further, by regularity, ¢; and hence p,,, are unique
in terms of satisfying (C3). Suppose at the k-th step where k < M, we have obtained a
unique pseudo price vector (1, Pimgys Dimgs -, Pmy,) that satisfies ([3). Now consider including
the (k + 1)-th type, myy1, that is currently not in My but is connected with M. Clearly,
my1 exists because I is connected. By regularity, m,1 is connected to M, via a single
agent, say ix.1. Suppose myyq is connected via igq to L (L > 1) types, say [, s, ..., [, in
M. Define py,,,, = ﬁh%, based on the connection between my,q and ;. If L =1,

the new vector (1,]3m2, ...,ﬁmkﬂ) clearly satisfies (I3), and py,, ., is unique. If L > 1, because

l1,1s,...,1;, are all in My and connected with each other, by induction hypothesis, p;,, ..., i,

. o o o
satisfy (I3). Therefore, p;, —H"EL = ) TR — | = p kTR T other words, the
B 2 Qg Loy gy ’

15



value of Py, ., is really invariant to the choice of I € {l;,--- ,1;} and (I3) holds for all the L
newly included connections. Hence (1, Drmas Pmgs - Dy +1) is well-defined and is unique. By
induction, the pseudo price vector exists and is unique.

We now prove (c¢). If Tis also PO, then by Proposition 0 and the fact that I, = I;,, = 1

for any m & n, the price vector must satisfy

Pm o Qim,

Pn Qin

Because the price vector p and the pseudo price vector p are both unique up to a scaling
factor, and are defined by the same ratio conditions, they must be identical up to a scale

factor. W
Proof of Theorem

Proof. We prove by construction. Consider a Pareto-optimal allocation x indicated by an
irregular I. Without loss of generality, suppose that the connection between mg and compo-
nent My (mg ¢ My) is not regular. Say mq & myand my & mpg, for some my,mg € My
and ig # 11 (the case m; = my is also permitted). Because M, is connected, there exists a

path between m, and mg, say m; IEN Mo DAY ms... L my. So the following trading cycle

C = ((i0, mo), (i1, m1), (i2,m2), - -+, (irc, M)

is feasible. By Lemma B, C' cannot be profitable. If C' is unprofitable, then by Lemma B,
C~1 is profitable, which cannot be true by Lemma B and the fact that C~! is also feasible.
Hence, C' must be profit neutral. So we can find a profit-neutral trade (C,€) such that after
the trade at least one agent i; runs out of my. This is bound to happen because at least
two agents are involved in this cycle and {mg, my,..,mg} is a distinct set of nodes. If iy
runs out of mg or ix runs out of mg, we eliminate a connection between mg and M. If i,

which is different from ¢y and ix, runs out of my, then either M is no longer connected;

16



or we may find a different path connecting m; and myg and repeat the process. The trade
does not add new feasible cycles because every recipient is already allowed to own the type
of goods that he receives. We can repeatedly use the same technique which removes an
irregular connection by either eliminating all “redundant” connections causing irregularity
or breaking up a component. Because this process does not add new connections or cycles
and because there are only a limited number of redundant connections, we will eventually
reach a new allocation that is regular. Since all trades leading to x" are profit neutral, the

new allocation must also be PO. N

Lemma 4. If an indicator matriz I is connected and reqular, then it has exactly N + M — 1

“1”7 elements.

Proof. We consider the process of constructing I; step by step. In each step k, an type
(column) my, connected to at least one existing type is added and so are agents (rows) who
own my but not the existing types. We denote I? and NV Jk as the indicator matrix and the
number of rows after the kth step respectively. Clearly, after adding the first type, Ijl- has a
size of le x 1, which has exactly le +1—1 “1” elements. Suppose I;‘? has Nf +k—1%“1
elements. Now we add my;. By construction, the new rows contribute exactly N f“ - N f
“1” elements. By the definition of regular connections, the new column has exactly one
“1” element at the existing rows. So the new matrix has NF +k — 1+ Nft' — N¥ 41 =
Nf“ + (k+1) —1 “1” elements. By induction, the matrix I, must have N; + M; — 1 “1”

elements. W
Proof of Proposition 3

Proof. Clearly, we only need to prove the result when the regular indicator matrix is con-
nected because equations from different connected components are unrelated and can be
solved separately. Assuming connectedness and using Lemma B we notice there is one re-

dundant equation in ([2) because if we only keep the first N + M — 1 equations, we still

17



have:

IEIED 3] D SER D AP e

ieN ieN \meM meM ieN
= Z DmWm + DM Z TinveLim
meM,m#M 1EN

Because the feasibility constraint ) cn % < walways binds, we can infer wy; = > ien Tint Ling
from the above and (H). Without loss of generality, assume the last equation (i.e., > ;o7 Tiv =
wyy) is dropped.

Noting that there are exactly N + M — 1 “1” elements in indicator matrix I (Lemma
@), we have exactly the same number of equations as the number of unknowns. To show
x is uniquely determined by (I[Z), we only need to show the (N + M — 1) x (N + M — 1)
coefficient matrix defined by the first N + M — 1 equations is invertible. Let this coefficient
matrix be A. The N + M — 1 columns correspond to the N + M — 1 unknowns. The rows in
A can be grouped into two types corresponding to the two types of equations in (I2). Each
of the first N rows (type-1 rows) corresponds to an agent while each of last M — 1 rows
(type-2 rows) corresponds to a type of goods. Except for x;y (i € N') each of which appears
only once in the system of equations, each unknown appears exactly twice in the system
of equations. Hence, for each column of A, there are either one or two nonzero elements.

Suppose A is not invertible, its row vectors must be linearly dependent. Hence, there exists

a set of nonzero numbers, 7v;,, Vi, - -+ ; Vig, such that
K
Z%‘kAik =0 (37)
k=1

where A;, is the i;-th row of A. Because there are either one or two nonzero elements in
each column of A, for each agent, if the corresponding type-1 row is in {4, |k =1,--- , K},
all the type-2 rows corresponding to the types of goods that the agent hold must also belong

to {A4; |k =1,---,K}. Hence, all types of goods connected to the types of goods implied

18



by {A; |k = 1,---, K} must also have their corresponding rows in {4; |k = 1,--- ,K}.
Because I is connected, this implies that {A; |k = 1,---, K} contains type-2 rows, hence
also all type-1 rows. Now it is straightforward to see that (B7) cannot be true because for

columns of A corresponding to x;s, ¢ € N, there is only one nonzero element. M

Lemma 5. For a Pareto-optimal indicator matrix 1, the system of linear equations defined

by (I2) has at least one solution.

Proof. We assume I is not regular because otherwise the result follows directly from Propo-
sition B. Clearly, we only need to prove the case when I is both PO and connected because
equations from different connected components are unrelated and can be solved separately.

From the proof of B, any Pareto-optimal allocation x° restricted by I is equivalent to a
regular allocation x! which is also restricted by I because the procedure transforming x°to
x! only involves setting some element I to 0 (or in the words of the the proof of B, removing
connections). Define I such that [, =1 only if the corresponding element in x! is positive.
Then I is regular and Iim =1 only if I;,, = 1 which further implies that any price vector for
I is also a price vector for I.

Consider the standardization procedure for I and use the same price vector p. Proposition
B ensures the existence of a solution to (I2) corresponding to I. Denote the solution by y.
Consider the unrestricted elements of I. If I;,, = 1 and I, = 1, set Tim = Yim; if I;y, = 1

and fzm =0, set x;,, = 0. Clearly, x is a solution to ([2) corresponding to I. W
Proof of Proposition @

Proof. By construction, x satisfies the feasibility condition. With the condition that x is
non-negative, we only need to show that x satisfies (). We have already shown that the
conditions (I7) are satisfied for (i,m) such that m € M; and i € N;. Because for m € M;
and ¢ ¢ Nj, z;, = 0 by construction, (I4) follows from condition (IH)(note that the Lagrange

multipliers are determined by the sub problems). W
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B The Search Heuristic

Before we discuss the search heuristic we currently use in our implementation of SIMS, we
need a few definitions. Suppose at step t, we have the allocation matrix x, the associated

indicator matrix I. Denote the marginal valuation matrix as follows:

- Q11 Q12 - Qim -
Q' (x) = 421 Q422 - Qom
| n1 Gn2 0 Gnm |
Define the Lagrange multiplier vector at step ¢t as A = (A1, Ag, - -+ , Ap,) where \; = max; g;;1;;

and define the imbalance matrix with typical element b;; being

bij = Gij/ A;-

A value of b;; greater than 1 indicates an imbalance at row ¢ column j in I, which means we
need to change I;; from 0 to 1. We say an element at row ¢ column j in I is more imbalanced

than an element at row " and column j" if b;; > by > 1.
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