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Abstract

We model a social media environment as an economy where consumption of

content means supply of attention and consumption of attention is through supply

of content. In such an economy with large population, there exists an attention

wage and the community will be segmented. Under certain conditions, users either

produce or consume content, meaning a perfect division of labor. The macro-

level content consumption and production is stable, suggesting the sustainability

of social media. Our theory is supported by data from Twitter and suggests that

the key innovation of social media is recognizing and connecting people’s need for

information and attention.
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1 Introduction

What information consumes is rather obvious: it consumes the attention of

its recipients. Hence a wealth of information creates a poverty of attention,

and a need to allocate that attention efficiently among the overabundance of

information sources that might consume it. (Simon, 1971)

The abundance of free content on the Internet and the assistance of online search en-

gines have dramatically transformed the way people acquire information. Nowadays, with

fast Internet access, cheap devices, and innovative services such as Twitter, YouTube, and

Wikipedia, an ever-growing proportion of the content on the Internet is generated by ordi-

nary Internet users. For example, Wikipedia has more than 13 million articles as a result of

contributions by volunteers. According to YouTube Fact Sheet, people are uploading hun-

dreds of thousands of videos daily. On Twitter, a micro-blogging site that allows its users to

broadcast short messages to their followers, people can find opinions and information on a

broad range of topics posted by their peers almost in real time. Despite the differences in the

content format, they are each produced by a large number of ordinary Internet users, rather

than by only a few publishers and television networks, as in the traditional media. This

ongoing shift to social media means that user-generated content is now playing an unprece-

dented role in people’s life and will probably completely alter the way content is generated

in our society in the future. 1

The fascinating phenomenon of social media poses interesting and important research

questions. For example, although it is quite reasonable that users consume others’ content

because they get benefits from content consumption, it is not yet clear what motivates

people to contribute content. As is often reported, only a small proportion of users actually

contribute content, while most users are “inactive” in the sense that they do not contribute

1User-generated content also has potential value to companies. See for example a recent Wall Street
Journal article “Follow the Tweets” by Rui, Whinston, and Winkler, published on November 30, 2009.
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any content at all. For example, on Wikipedia, the top 15% of the most prolific editors

account for 90% of Wikipedia’s edits. In a recent article on the blog of Harvard Business

School, Bill Heil and Mikolaj Piskorski found that the top 10% of prolific Twitter users

accounted for more than 90% of the tweets, and they suggest that Twitter resembles more of

a one-way, one-to-many publishing service. 2 A natural question to ask is if this “seemingly”

unbalanced structure is sustainable and one may wonder whether social media is a revolution

or merely another fad? This leads to the more fundamental question of what is the unique

innovation of social media. Is it about technological advancement like fast chips and better

algorithm, or something else? We argue in this paper through both theoretical modeling and

empirical study that the key innovation of social media is recognizing and connecting people’s

need for information and attention. People have a natural need for information that drives

them to search for content on the Internet. The more content available, the better such need

will be satisfied. 3 On the other hand, attention from others is also extremely valuable and is

greatly appreciated by many people. For example, by getting attention, people get publicity,

vanity, or ego gratification from peer recognition. There are also various ways for people

to monetize the attention they get from others. However, people are often intrinsicly or

extrinsicly heterogeneous in their preferences towards content (information) and attention.

Moreover, the productivity of generating valuable content also varies among the population.

Some people are in a much better position than others in terms of producing useful and

interesting content because of their knowledge, profession, etc. Just like many financial

innovations that recognized the heterogeneity of people’s attitudes towards different risk

and thereby created the marketplace for people to exchange these risk, social media services

like Twitter have successfully created the marketplace for people to exchange content and

attention.

2http://blogs.hbr.org/cs/2009/06/new twitter research men follo.html
3Nowadays, search cost is low because of many powerful search engines that are freely available.
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To better understand our theory, we conceptualize a social media environment as an

economy where consumption of content means supply of attention and consumption of at-

tention is possible only through the supply of content. Both the supply of content and the

supply of attention involve investment of time, hence time is money in this economy. Users

in the economy interact with each other through their allocations of time into content con-

sumption and content production. To make this rigorous, we develop a game-theoretical

model to capture and study this interaction among users, and then use a massive collection

of data from Twitter to test four hypotheses that are based on the theory.

More specifically, we model each user as a rational agent who faces a limited endowment

of time and tries to optimally allocate her time to maximize her utility from the consump-

tion of content and attention. Their decisions are intertwined since a user’s utility from

consumption depends on others’ production decisions while a user’s utility from production

depends on others’ consumption decisions. We explore the equilibrium outcome of this game

by characterizing how users choose their roles in the community and consequently how the

community is segmented into content consumers, content producers, and content prosumers

(i.e. users who engage in both content production and consumption). We find that as the

community size grows large enough, there exists a unique constant for the community which

we interpret as the community attention wage for producing content. Each user compares

their two individual reservation wages with the community wage to determine whether they

want to be a content producer, consumer, or prosumer. Interestingly, we also identify the

existence of a special equilibrium, called the partition equilibrium in our term, which occurs

when users’ utility functions satisfy a certain linearity condition. In the partition equilib-

rium, users self-select themselves into either the group of content consumers or the group of

content producers. These results suggest that there is a tendency for specialization of users’

utility maximization strategies. They also shed some new light on our understanding of the

role of those so-called “inactive” users in many social media sites. To understand the sus-
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tainability of the social media, we extend the model to the dynamic setting where users also

choose endowments of time based on their opportunity costs. We find that the system that

characterizes the content demand and supply at the macro-level has a non-trivial, asymp-

totically stable equilibrium point suggesting the sustainablity of social media supported by

user-generated content.

To empirically verify our theory, we use data collected from twitter.com to test four

hypotheses. Our first hypothesis says that users who value attention more tend to produce

content more frequently. We support this hypothesis with nearly 3 million Twitter user

profiles. The second hypothesis says that more capable Twitter users (in terms of producing

content) produce content more frequently which is again consistent with the data. Our third

and fourth hypotheses are based on an econometric model characterizing the distribution of

users’ frequencies of generating content and are also supported by the data.

The paper is organized as follows. Section 2 reviews the relevant literature. Section 3

presents our basic theoretical model. In Section 4, we focus on the partition equilibrium

and discuss the macro-level stability property of the partition equilibrium. In Section 5, we

propose four hypotheses and test them with the data from Twitter. We conclude in Section

6 with a discussion of our findings, their practical implications, limitations and suggestions

for future work.

2 Relevant Literature

There is a diverse literature related to our research questions, among which we will mainly

introduce three streams of literature: economics, management, and computer science.

From a traditional economics point of view, contributing content in an online community

is like the private production of public goods. Producing content is a cooperative behavior,

while consuming content without contributing content is a non-cooperative behavior. The
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puzzle is why so many users actively spend their valuable time providing content instead

of free-riding on others’ contribution, which would eventually lead to the collapse of the

social media. Unlike the offline world, where formal enforcement mechanisms like contracts

and agreements can be made, in the online world, people are only loosely connected and

formal means of enforcement are just not feasible. Economists have also studied informal

enforcement mechanisms, including personal enforcement and community enforcement. Per-

sonal enforcement involves retaliation to the non-cooperative agent by the victim who plays

a cooperative strategy. However, in most large social media sites, users seldom have such

kind of long-term relationships. On the other hand, the community enforcement mechanism

offers another explanation as to why people cooperate (Kandori 1992). Roughly speaking,

cooperation may be sustained in the community because people fear that if they stop coop-

erating, non-cooperative behavior will “spread” like a disease to others, and this contagious

process will eventually bring down the community from which they all benefit. Although

such cooperative equilibrium seems to fit the context of online communities, it is quite frag-

ile in the sense that small noise may cause the complete breakdown of cooperation in the

community. These days, large social media sites have tens of millions of users. It will be

extremely difficult, if not impossible, to sustain this type of cooperative equilibrium.

Rather than assuming that contribution is purely a cooperative behavior that only ben-

efits others, some economists and sociologists take another approach by arguing that con-

tributing itself benefits the contributor. In the literature of economics of gift and charity,

researchers suggest that people have a taste for giving. For example, Andreoni argues that

“egoists” and “impure altruists” not only care about supplying public good but also expe-

rience a “warm glow” from having “done their bit” (Andreoni 1989). Roberts, Hann and

Slaughter categorize three factors that could motivate users to contribute to open source soft-

ware (OSS) development: 4 intrinsic, extrinsic, and internalized extrinsic factors (Roberts

4OSS could be viewed as a special type of user-generated content. Developers spend time developing
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et al. 2006). Intrinsic factors refers to the satisfaction and enjoyment obtained from cre-

ating and contributing (Shah 2006) while extrinsic factors refers to the incentive provided

by external environments, including organization rewards (Bock et al. 2005), career oppor-

tunities (Shah 2006, Jeppesen, 2006), etc. Internalized extrinsic factors refers to extrinsic

motivations that are self-regulated instead of directly imposed by external environments,

like reputation (Wasko 2005) and status seeking (Robert 2006). Lerner, Pathak, and Tirole

(2006) argue that open source software developers may get some short- or long-run bene-

fits. For example, a programmer may find intrinsic pleasure, get ego gratification from peer

recognition, attract potential future employers etc. Whether the intrinsic factors, extrinsic

factors, or internalized extrinsic factors motivate a user to contribute, it is reasonable to

assume that, in most cases, more attention will lead to higher value to users who contribute.

This is also consistent with Lerner, Pathak, and Tirole’s suggestion that the more visible the

performance to the relevant audience (peers, labor market, and venture capital community),

the stronger such benefits will be. In this paper, we do not go into the underlying psycho-

logical and sociological mechanisms of why people contribute content in online communities.

Rather, we assume that these underlying mechanisms manifest themselves through people’s

seek of attention from others.

The literature on the economics of Peer-to-Peer (P2P) networks is also related to this pa-

per because, broadly speaking, sharing resources on P2P networks is analogous to contribut-

ing content in online communities. Researchers have long been discussing the “free-riding”

problem of P2P networks. Various incentive mechanisms have been proposed to tackle this

problem. In a recent paper, Feldman et al. (2006) developed a modeling framework that

takes users’ generosity into account. Their paper focused very specifically on P2P networks

and their suggestion that free-riding could be sustainable in equilibrium is very illuminating

valuable open-source software and users spend time using these software and obtaining value from their
usage.
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and reinforces our result on user segmentation in equilibrium. Also, the “generosity-driven”

view is analogous to our “attention-driven” view. However, the users’ decision problem in

their model is rather simplistic compared with our more comprehensive one. In this sense,

our model significantly extends their work.

In a recent experimental study on the communication structure of virtual communi-

ties, Sohn and Leckenby (2007) compared the performance of two different communication

structures—one based on a public electronic bulletin board (group-generalized exchange,

GEX) and the other based on the interpersonal networks (network-generalized exchange,

NEX , e.g., blogs, Twitter). They found that the latter is more effective in the sense that

more contributions were made. Their explanation is that the network-generalized exchange

structure enhances contribution efficacy because in NEX each user’s contributions are pre-

sented separately from those of others. Our interpretation for this is that in GEX, even

though the community as a whole gets attention, individual users do not get much atten-

tion, which severely limits users’ motivation to contribute. On the other hand, in NEX ,

contribution can attract attention directly to the contributor because content is accessed at

each user’s individual homepage rather than the common pool.

There is also a growing interest in the computer science literature on user-generated

content. For example, Huberman et al. (2008) showed through an analysis of a massive

data set from YouTube that the productivity exhibited in crowdsourcing exhibits a strong

positive dependence on attention, measured by the number of downloads. They found that

lack of attention leads to a decrease in the number of videos uploaded and the consequent

drop in productivity. In another recent paper, Guo et al. (2009) empirically studied the

patterns of user content generation in three online communities, including a blog system,

a social bookmark sharing network, and a question-answering social network. They found

that the rank order distribution of user posting follows stretched exponential distribution,

which is quite close to our finding of exponential distribution of user contribution rates in
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Section 5. The major difference is that we derived the exponential distribution from our

theoretical model, with simplifying assumptions on the distribution of users’ heterogeneity.

The theoretical foundation of our empirical study differentiates our work from that literature.

3 The Model

3.1 Model Setup

There are n users in an online community where n is large. In this section, we assume that

each user spends a fixed amount of time in the community; we call this the time budget and

denote by Ti for user i with Ti ∈ [T , T ], 0 < T < T < ∞. There are two ways for a user to

spend time in the community: consuming content or producing content. We use ri to denote

the proportion of time user i spends on consuming content produced by other users and wi

the proportion of the time user i spends on producing content; thus ri+wi = 1, ri ≥ 0, wi ≥ 0.

User i will produce Si = qiTiwi amount of content, where qi is the productivity of user i in

producing valuable content, qi ∈ [q, q], 0 < q < q < ∞, and wi is the decision variable for

user i.

We denote the total amount of content produced in the community by

S =
n

∑

k=1

qkTkwk. (1)

We also use S−i and S−ij to denote the total amount of content produced by everyone except

user i and the total amount of content produced by everyone except user i, j respectively.

A user obtains utility from two sources. First, since a user gets information or pleasure

from the content, she obtains utility from consuming the content. The amount of utility a

user can get by consuming content depends not only on the time she devotes to it but also
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on the amount of content available to her. Hence, we model this part of utility as follows:

uri = ψ(Tiri)φ(S−i), (2)

where ψ(0) = 0, ψ′ > 0, ψ′′ ≤ 0, and φ(0) = 0, φ′ > 0, limx→∞ φ(x) < ∞. The concavity as-

sumption of ψ means decreasing marginal utility from consuming content. The monotonicity

assumption of φ means that the larger the amount of content available, the more utility a

user can get from consumption for each time unit. If there is no content available, then a

user can’t get any value from consuming so that the utility is zero (φ(0) = 0). Although an

increase of content available to user i will lead to an increase of utility given Tiri, we believe

such effect is bounded as S−i goes to infinity so that limx→∞ φ(x) <∞. The rationale behind

this is that a user can only get a limited amount of utility for each unit of time, regardless

of how much content is available to her.

The second way for a user to obtain utility is by producing content. A user may enjoy

publicity so that the more attention she gets from others who consume her content, the

higher her utility is. To model this, we assume that the utility a user gets from content

production is proportional to the total attention she gets from all other users, which we

measure by the total time others spend on consuming her content. Intuitively, a user with

more content should have a higher chance of getting attention from another user. To make

things simple, we assume the amount of attention user i can get from user j is proportional

to the content produced by user i, which is:

aji =
qiTiwi
S−j

Tjrj.

In the above, the denominator is the total amount of content available to user j. So how

much attention a user can get depends on her relative standing in terms of content in the
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community. Summing up over j gives the total attention user i gets:

ai =
∑

j 6=i

qiTiwi
S−j

Tjrj.

We use αi ∈ [α, α] to account for users’ heterogeneity in terms of their preferences for

attention relative to that of content consumption where 0 ≤ α ≤ α. The larger α is, the

more a user values attention. User i’s utility function is then defined as follows:

ui = ψ(Tiri)φ(S−i) + αi ·
∑

j 6=i

qiTiwi
S−j

Tjrj. (3)

The structure of the static game is described as follows. First, each user is endowed

with (α, q, T ), and the population endowment (αi, qi, Ti), i = 1, · · · , n is common knowledge.

Then, each user decides the proportion of time she will spend on content consumption (ri)

and content production (wi) to maximize her utility.

The equilibrium concept we use is Nash equilibrium, and we are only interested in pure-

strategy Nash equilibrium, where each user chooses wi ∈ [0, 1]. The utility maximization

problem for user i, i = 1, 2, · · · , n, is formally written as:

max
0≤wi≤1

ui = ψ(Ti(1 − wi))φ(S−i) + αi ·
∑

j 6=i

(

1 − S−ij

S−ij + qiTiwi

)

Tjrj, (4)

which is a complex problem in general because the solution depends on all other users’

decisions. Particularly, we should be aware that in equilibrium, rj , wj, 0 ≤ j ≤ n are

all functions of αi, qi and wi. However, when the community size is large enough, certain

properties of the equilibrium could be characterized. Although our results hold under general

distribution of (α, q, T ), for ease of illustration, we assume from now on that the distribution

of (α, q, T ) is absolute continuous in its support.
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3.2 Homogeneous Users

In the simplest case where users are homogeneous in the sense that (αi, qi, Ti) = (α0, q0, T0),

we would expect each user of the community to serve both as a content producer and content

consumer. Indeed, such kind of equilibrium always exists. Assume wj = w0, rj = 1 − w0,

j = 1, · · · , i− 1, i+ 1, · · · , n; then user i’s utility function simplifies to:

ui = ψ(T0(1 − wi))φ ((n− 1)T0w0q0) + α0(n− 1)T0(1 − w0)
wi

(n− 2)w0 + wi
.

The first-order condition is

−ψ′(T0(1 − wi))φ ((n− 1)T0w0q0) + α0(n− 1)(1 − w0)
(n− 2)w0

((n− 2)w0 + wi)2
= 0.

We need to examine whether w0 is the solution to the above equation. Substituting wi = w0

into the equation, we have:

−ψ′(T0(1 − w0))φ ((n− 1)T0w0q0) + α0
n− 2

n− 1

1 − w0

w0
= 0.

Notice that the left-hand side is negative if w0 = 1 and positive if w0 → 0 as long as α0 > 0.

So there always exists w0 ∈ (0, 1) satisfying the above equation, which means each user’s

first order condition is satisfied. Therefore, in a homogeneous community, as long as the

common α is positive, there exists a symmetric equilibrium where everyone spends time in

both content consumption and content production.

3.3 Heterogeneous Users

It makes more sense to assume that community users are heterogeneous in terms of both

productivity (qi) and motivation (αi). A natural question to ask is how the consumption and
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production of content will be organized in such a heterogeneous community. For example,

is there an equilibrium where everyone in the community serves as both content producer

and content consumer, in a way closer to our intuitive understanding of the social media?

Or on the other extreme, is there an equilibrium where users self-select themselves into

either content consumers or producers but not both, in a way resembling the feature of

the traditional media? It turns out that the answer lies somewhere in between. While the

division of labor is inevitable, the content consumption and content production must be

balanced, i.e., the consumption time and production time must be of the same order. This is

in clear contrast to the traditional media where only a handful of newspaper and television

broadcast content to the massive audience.

To characterize the equilibrium, we start by categorizing users in the community. Users

could be classified into three groups in any equilibrium: those who only consume content

(i.e., IC = {i : wi = 0}), those who only produce content (i.e., IP = {i : wi = 1}), and

those who both consume and produce content (i.e., IM = {i : 0 < wi < 1}). We call user

i a consumer if i ∈ IC , a producer if i ∈ IP , and a prosumer if i ∈ IM . Denote nC , nP , nM

to be the number of users in each group correspondingly with nC + nP + nM = n. Also, we

define TC =
∑

i∈IC Ti, which is the total amount of time spent by consumers, and denote

TC−i = TC−Ti as the total amount of time spent by all consumers except user i. The following

lemma partially characterizes the equilibrium structure of a heterogeneous community.

Lemma 1. In any equilibrium of the game, the three groups are characterized as follows

i ∈ IC ⇐⇒ αiqi ≤ hC(i) =
S−iφ(S−i)ψ

′(Ti)

TC−i + S−i
∑

j∈Im,j 6=i
Tjrj
S−ij

,

i ∈ IP ⇐⇒ αiqi ≥ hP (i) =
(S−i + qiTi)

2

S−iTC−i + (S−i + qiTi)2
∑

j∈IM ,j 6=i
S−ij

(S−ij+qiTi)2
Tjrj

φ(S−i)ψ
′(0),

i ∈ IM ⇐⇒ hC(i) < αiqi < hP (i).
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Notice that the above lemma does not fully characterize each group because the right-

hand side of each inequality depends on the decisions of each user in the community. However,

it does suggest that the product αq measures to some extent the willingness of a user to

produce content.

The next lemma is a technical result that we use in Proposition 1, but the intuition is

also not difficult to understand. Basically, it says that as the community size grows, the total

attention (total consumption time) can not increase too fast compared with the increase of

the amount of content. In others words, the total consumption time and total production

time must be balanced.

Lemma 2. In any equilibrium5:

lim
n→∞

S = ∞, lim
n→∞

TC−i

Sβ−i
= 0, lim

n→∞

∑

j∈IM ,j 6=i

Tjrj

Sβ−ij
= 0, , ∀i, j = 1, 2, · · · , n, ∀β > 1.

Based on Lemma 1 and Lemma 2, we are able to characterize the asymptotic properties of

hP (i) and hC(i), the thresholds that determine whether a user chooses to become a consumer,

a producer, or a prosumer. The following proposition claims that there will be one common

hP for all users, while hC(i) only depends on hP and Ti as n→ ∞.

Proposition 1.

lim
n→∞

hP (i) = hP , lim
n→∞

hC(i) = hP
ψ′(Ti)

ψ′(0)
= hC(Ti),

where hP is a constant. With infinitely large population, user i becomes a

• producer if W > WH
i ,

• prosumer if WH
i > W > WL

i , and

5We exclude one type of pathological equilibrium, where limn→∞

nM

n
6= 0, but limn→∞ wi = 0, ∀i ∈ IM .
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• consumer if W < WL
i .

where W = 1/hP is interpreted as the community attention wage and

WH
i =

1

αiqi
, WL

i =
ψ′(Ti)

αiqiψ′(0)

are interpreted as user i’s high reservation attention wage and low reservation attention wage

respectively.

Notice that W could roughly be interpreted as the ratio of attention supply to content

supply, which serves as an indicator of the community wage for producing content in the

“attention economy”. Each user has two reservation wage levels: the high reservation wage

WH
i and the low reservation wage WL

i . If the community wage is higher than her high

reservation wage, she chooses to become a producer. If the community wage is lower than

her high reservation wage but higher than her low reservation wage level, she chooses to

become a prosumer. If the community wage is lower than her low reservation wage level, she

chooses to become a consumer.

Based on Proposition 1, we could depict how users in the community are divided into

producers, consumers, and prosumers as is shown in the α−q plane in Figure 1. In particular,

users with αiqi > hP become producers; users with αiqi < hP
ψ′(T )
ψ′(0)

become consumers; users

with hP
ψ′(T )
ψ′(0)

< αiqi < hP become prosumers; users with hP
ψ′(T )
ψ′(0)

< αiqi <
ψ′(T )
ψ′(0)

, depending

on their Ti, either become consumers or prosumers.

Notice that the above result is analogous to the result in a recent paper by Katona and

Sarvary (2007) in which they studied the network structure of the commercial World Wide

Web. They found that there is a specialization across sites in revenue models: high content

sites tend to earn revenue from the sales of content while low content sites from the sales

of traffic. In our case, highly motivated and more capable users obtain utility from content

production while users who are not highly motivated and less capable obtain utility from
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α α
q

q

αq = hc(T )

αq = hc(T )

αq = hp

Figure 1: The Segmentation of the Social Media Community

content consumption.

From Lemma 2 and the proof of Lemma 1, we also have the following result.

Corollary 1. If the community size is large enough, in any Nash equilibrium, (1) Ti =

Tk, qi = qk, αi > αk ⇒ wi > wk (2) Ti = Tk, αi = αk, qi > qk ⇒ wi > wk.

The above result claims that in equilibrium, users with higher α or higher q devote a

larger proportion of time to content production, holding everything else equal, which is

consistent with our intuition.

4 The Partition Equilibrium

4.1 Existence of the Partition Equilibrium

Based on Proposition 1, when ψ(ri) is a linear function, WH
i = WL

i , that is, the two

reservation wage levels of user i coincide, which means she either chooses to become a content

producer or a content consumer. More precisely, under absolute continuous distribution of

(α, q), the proportion of those users with hC(i) < αq < hP (i) shrinks to zero as hC(i) and

hP (i) become closer and closer. So we have the following result.
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Proposition 2. With absolute continuous distribution of (α, q, T ), limn→∞
nM

n
= 0 if and

only if ψ′′ = 0 (i.e., if ψ(·) is linear).

When ψ(·) is a linear function, we call the equilibrium where WH
i = WL

i , ∀i = 1, 2, · · · , n

the partition equilibrium, where the community is simply divided into two groups: content

producers and content consumers. This kind of equilibrium is of particular interest because

it offers one possible explanation for the often observed phenomenon that in many large

social media sites a small proportion of the users accounts for the majority of the content.

According to Proposition 2, in the partition equilibrium, there will be a clear division of

labor. Content producers often are seen as very active users, and content consumers are often

labeled as the “inactive” majority. Even though some may argue that content consumers

are free riders of the community, our model suggests that they are as important as content

producers to sustain the community because the attention they provide is the main drive for

producers to keep contributing.

It should be noted that we do not require n to actually be infinity to have the partition

equilibrium. All we need is that n is large enough so that hC(i) and hP (i) are close enough

to hP for any i, in which case, αiqi falls between hC(i) and hP (i) with probability close

to zero. With absolute continuous distribution of (α, q), partition equilibrium occurs with

probability approaching 1 as n becomes larger and larger.

The intuition of Proposition 2 is as follows. A user’s allocation of time on content

consumption and content production depends on the marginal utility she can get from the

two alternatives. When the community is so large that the content available to her is

infinitely abundant, the marginal utility of spending time on consumption approaches to

some constant for all users because in such a “content-rich” community, content availability

is not a concern for a user and the only determinant of her utility from consumption is

her time devoted in consumption. On the other hand, the marginal utility from spending

time on content production varies across users because they have different preferences for
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attention (α) and different productivity (q). In the limit where users’ marginal utility from

consumption becomes the same, those who have marginal utility from production higher

than this constant become producers and those who have marginal utility from production

lower than this constant become consumers. The abundance of content in the community

makes its users homogeneous in their preferences for consuming content while keeping them

heterogeneous in their preferences for producing content.

In this section, we always assume that ψ(·) is linear so that we could focus on the partition

equilibrium. Since ψ is linear, we denote ψ′(T ) = τ > 0, ∀T ≥ 0 for convenience, which means

ψ(T ) = τT . Also, we normalize limS→∞ φ(S) = 1
τ

so that ψ′(T ) limS→∞ φ(S) = 1, ∀T > 0.

This is without loss of generality since we could scale α for the whole community to adjust

φ(S).

The next result shows how the threshold is determined by the population distribution of

user profiles (α, q, T ).

Corollary 2. In the partition equilibrium, (1) content consumers obtain utility uCi = ψ(Ti)φ(S),

i ∈ IC; (2) content producers obtain utility uPi = αiqiTi
TC

S
, i ∈ IP ; (3) the threshold

h = limn→∞ hP (i) = limn→∞ hC(i) is determined by the following equation:

h =

∑

αiqi>h
qiTi

∑

αiqi<h
Ti

(5)

Next, we study how a change of α or q in the population affects the content generation

in the community. We say the population shifts up in α if α′
i ≥ αi and αi ≥ αj ⇒ α′

i ≥ α′
j ,

where α′
i is the value of α for user i after the shift. Shifting up in q is similarly defined.

Corollary 3. (1) Shifting up of α in the population increases both the amount of content

produced and the number of producers. (2) Shifting up of q in the population increases the

amount of content produced.

17



Notice that a content producer’s utility αiqiTi
TC

S
might not increase as q shifts up in

the population. But a content consumer’s utility does increase since S will increase. This

suggests that producers as a whole do not have the incentive to improve productivity. The

increase of productivity is driven by the competition for attention. On the other hand, the

increase of α does increase the utility of content producers, as well as the utility of content

consumers.

4.2 The Macro Dynamics of the Partition Equilibrium

Previously, we have taken Ti as fixed. Here we relax this assumption by allowing users to

optimally choose their endowment time Ti based on their individual opportunity cost. For

simplicity, we model this opportunity cost as a quadratic function T 2
i /2θi, where θi reflects

the heterogeneity of opportunity costs among users. Now both Ti and wi are users’ decision

variables. To keep the model tractable, we assume ψ′′(·) = 0 and n is large.

The main purpose of this subsection is to show that social media supported by user-

generated content is robust in the sense that the macro-level production and consumption

of content is stable when there are small changes in Ti, i = 1, · · · , n. The stability contrasts

with the instability of the contagious equilibrium discussed in the community enforcement

model (Kandori 1992). We argue from a theoretical point of view that the attention-driven

perspective could be a more practical explanation for the thriving of user-generated con-

tents. People contribute content to the community not because they fear the community

will collapse as a result of their not contributing, but because they could obtain utility from

the attention they will get by contributing content.

First, we characterize the equilibrium in this new game.

Proposition 3. The Nash equilibrium of the game is characterized as follows: (1) User

with αiqi < h = S
TC chooses Ti = θiφ(S)τ and wi = 0; (2) User with αiqi > h = S

TC
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chooses Ti = TC

S
θiαiqi and wi = 1. S and TC are determined as the solution to the following

equations:














S =
∑

αiqi>
S

TC

TC

S
αiq

2
i θi

TC =
∑

αiqi<
S

TC
φ(S)τθi

(6)

We could interpret wi as user i’s using habit which does not change over time. On the

other hand, we interpret Ti as her daily or weekly time spent in the community that may

fluctuate over time around its average. Hence, we write Ti as Ti(t) and Equations (6) defines

a dynamic system of content production and consumption at the macro-level. The next

result shows that the point (S, TC) determined in the equilibrium identified in Proposition

(3) is actually an asymptotically stable equilibrium.

Proposition 4 (Macro-Level Stability). The macro-level dynamics of content production

and consumption are characterized by Equations (7)















TC = g1(S) = k1φ(S)

S = g2(T
C) = k2

√
TC

, (7)

where k1 =
∑

i∈IC τθi and k2 =
√

∑

i∈IP αiq
2
i θi are constant. This dynamic system has an

asymptotically stable equilibrium point (TC∗, S∗) where TC∗ > 0, S∗ > 0.

Since (TC , S) = (0, 0) is also an asymptotically stable equilibrium point, neither of the

two equilibria are globally stable. Even with some small change of Ti, as long as the user’s

usage habit (i.e., wi) does not change simultaneously with Ti, each user’s choices of Ti will

converge to the Ti in the equilibrium since Ti is determined by the macro-level variables

S, TC , which will converge to the values in equilibrium based on the above proposition. We

close this section with a comparative static result.
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Corollary 4. Increase of q or α in the population leads to more supply of content (S) and

more demand of content (TC).

The above result implies that improvement of technological environment (e.g., faster

Internet access, popularity of smart phones, camera & camcorder, new services like Flickr,

YouTube, Twitter etc.) could stimulate the “attention economy” by increasing q. In the

next section, we take a close look at one of these innovative services and actually test some

of the results in model.

5 Empirical Test

5.1 Data Description

We collected data from twitter.com, which is an open social networking and micro-

blogging service launched publicly in July 2006. It is one of the fastest-growing social network

sites in 2009 and is estimated to have tens of millions users. Users can use Twitter to post

and read messages known as tweets (also known as updates), which are text-based posts of

up to 140 characters. A user’s followers are the users who subscribe to receive the user’s

tweets. Users do not necessarily need to know the people they are following and vice versa.

Twitter is particularly effective in connecting people’s need for information and attention

through this structure.

We used Twitter’s open application programming interface (API) to develop a program

to collect user information. Such information includes user name, location, number of up-

dates, number of followers, number of people they are following (called friends in the API

documentation), date of account creation, and a short description of himself or herself. Our

data includes 3.61 million Twitter user profiles collected in 2009 and 2010.6 For our research,

6The actual total number of Twitter users is never published by the company although some people
estimate that it might be around 30 million in the middle of 2009.
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we are mainly interested in the frequency with which new tweets or updates are posted by

each user. To obtain this data, we divide the total number of updates by the total number

of days since an account was created. We denote the derived variable by UPDATERATEi,

which we believe is a reasonable proxy of Tiwi in our model. This is because the length of a

tweet is limited to 140 characters so that, on average, the time needed to write a tweet should

not differ too much. However, the amount of content in each tweet depends on the capability

of the producer (i.e., qi). Some content producers post very informative or insightful tweets

while some producers post mostly trivial or even spam tweets.

A Twitter user has the option of putting a link on her profile. This link is displayed on

the user’s Twitter homepage and can be clicked by visitors who might be interested in this

particular user. We use a dummy variable LINK to denote whether a Twitter user has a

link or not. A Twitter user also has the option of writing a short biography which will be

displayed on her Twitter homepage. The maximal number of characters allowed is 160. We

capture this attribute by the normalized biography length BIO which is the total number

of characters of the biography divided by 160. We also include the number of followers each

user has and the number of friends each user has. 7 Table 1 summarizes the variables used

in our empirical study.

Table 1: Summary of Variables

Name Meaning Min Max Mean
UPDATERATE number of tweets posted per day 0 1009.9 0.67858
LINK 1 if the user has a link, 0 otherwise 0 1 0.25045
BIO length of biography 0 1 0.14375
FOLLOWERS number of followers 0 2986300 211.34
FRIENDS number of users they are following 0 774450 190.03
DAY S number of days since account creation 91 1421 264.59

7These two number are highly correlated because of the ”following back” etiquette (i.e., a user often
follows back another user who follows him).
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5.2 Hypotheses

About 25% of the Twitter users put a link on their profile while the other 75% do not.

These links are usually their personal blog sites or the organizations they represent. In other

words, these are generally the sites they try to promote so that more people will visit. We

believe that users with a link on their profile value attention more than those without a

link on their profile because of users’ self-selection based on how much they value attention.

Those who highly value attention are more likely to put a link on their profile to actively

seek attention in the form of clicks on the link. On the other hand, users who do not care as

much about attention do not bother to set up a personal or organizational page and put that

on their profile. This underlying self-selection process leads to the result that users with a

link on their profile value attention more than those without a link on their profile. Similar

arguments indicate that those users who write a lot in their short biography value attention

more than those who write little or nothing for their biography.

Translated into our model, the above arguments suggest that those with link on their

profile and those who write more in their biography have larger α values. On the other

hand, Proposition 3 implies that users with larger α values will devote more time to content

production in equilibrium if we assume α, q, and θ are distributed independently, hence, we

have the following hypothesis.

Hypothesis 1. (H1-a)Twitter users with a link on their profile have a higher UPDATERATE

than users without a link on their profile.

(H1-b)Twitter users with larger BIO have higher UPDATERATE.

The number of followers a Twitter user has is an indicator of a user’s capability of

producing content because users tend to follow others whose tweets are interesting or useful

to them. Analogous to the idea of PageRank, we would expect users with more followers

to be more productive in the sense that they are more capable of producing content that
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others find interesting or useful. So we take FOLLOWERS as a proxy of q in our model.

Based on Proposition 3, and again by assuming that α, q, θ are distributed independently,

we propose the following hypothesis.

Hypothesis 2. Twitter users with higher FOLLOWERS have higher UPDATERATE.

We first do the logarithmic transformation on the dependent variable UPDATERATE so

that it could take negative values. Correspondingly, we take the logarithmic transformation

on FOLLOWERS and FRIENDS. We use the following regression model to test the

Hypothesis 1 and Hypothesis 2.

ln(UPDATERATEi) = b0 + b1 × LINKi + b2 ×BIOi + b3 × ln(FOLLOWERSi)

+ b4 × ln(FRIENDSi) + ǫi. (8)

If our hypotheses are correct, the estimates of b1, b2 and b3 from Equation (8) should all

be positive and significant.

Our third hypothesis regards the distribution of UPDATERATE among Twitter users.

Assuming linearity of ψ(·), Proposition 2 suggests that as the community size becomes large

enough, it will be partitioned into two groups: users in the bottom left region of the α − q

plane become content consumers, users in the upper right region become content producers.

So we would expect a large proportion of Twitter users to have very low UPDATERATE.

To derive the distribution of UPDATERATE, we again use the setup in Section 4.3 by

allowing users to choose Ti. From Proposition 3, we know Ti = TC

S
θiαiqi, i ∈ IP . Hence,

producers with the same αqθ value should spend the same amount of time producing con-

tent, resulting in the same UPDATERATE. We need assumptions on the distribution

of (α, q, θ) to derive the distribution of UPDATERATE. For simplicity, we assume that

the distribution of θi is independent of that of (αi, qi), and (αi, qi) is uniformly distributed
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in the region (α, α) × (q, q). Hence, the number of content producers who spend time T ,

T2 < T < T1 producing content is proportional to the shadow area in Figure 2, which is

computed as follows:

A(T1, T2) =

∫ ᾱ

T1/q̄

(q̄ − T1

x
)dx−

∫ ᾱ

T2/q̄

(q̄ − T2

x
)dx (9)

= (T2 − T1)(1 + lnᾱ+ lnq̄) + T1lnT1 − T2lnT2, (10)

αα αα
qq

qq

T1T1

T2T2

Figure 2: Hypothesis 3

lim
T2→T1

A(T1, T2)

T2 − T1
= 1 + lnᾱ + lnq̄ + lim

T2→T1

T1lnT1 − T2lnT1 + T2lnT1 − T2lnT2

T2 − T1
(11)

= lnᾱ + lnq̄ − lnT1. (12)

So the following econometric model should characterize the distribution of UPDATERATE

among producers.

USERCOUNTk = a0 + a1 × ln(RATEk), (13)
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where USERCOUNTk is the number of users whose UPDATERATE is in the interval:

[RATEk, RATEk+1].

We use the following cutoff points to categorize all the Twitter users in our sample:

RATE0 = 0, RATEk+1 = RATEk + 0.01, k = 0, 1, · · · , 499.

Hence, we have the following hypothesis.

Hypothesis 3. The coefficient of ln(RATEk) in Equation (13) is negative and significant.

Even though “Twitter resembles more of a one-way, one-to-many publishing service more

than a two-way, peer-to-peer communication network” 8, Twitter’s function as a communi-

cation tool among friends is still significant. This would suggest that there will be a lot

of noise in the above regression model because the observed UPDATERATE reflects both

content produced for attention and content produced for communication. Such effect is par-

ticularly salient when UPDATERATE is small. However, it is reasonable to assume that

as UPDATERATE becomes larger, the impact of such noise will diminish.

Based on the above analysis, we conjecture that Equation (13) should fit the data better

when we exclude small values of RATEk.

For ease of illustration, we denote the sample with all 500 points as SAMPLE0, the sub-

sample of {(USERCOUNTk, RATEk+1), k = 1, 2, · · · , 499} as SAMPLE1, the subsample

of {(USERCOUNTk, RATEk+1), k = 2, · · · , 499} as SAMPLE2 and so on. We also denote

R2
m as the R-squared of the regression of Equation (13) with SAMPLEm. We consider

R-squared as a reasonable measure of how well Equation (13) fits the data. Hence, we have

the following hypothesis.

8http://blogs.hbr.org/cs/2009/06/new twitter research men follo.html
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Hypothesis 4. R2
m is increasing in m.

5.3 Results

We have collected 3,615,972 profiles of Twitter users who joined Twitter at least 91

days before we collected their profiles. We impose this 91-day restriction to get reasonably

accurate estimate of UPDATERATE. For Hypothesis 1 and Hypothesis 2, we remove

those who have 0 friends, or 0 followers, or 0 updates so that we can do the logarithmic

transformation on the data. After this, there are 2,891,298 user profiles left for us to test

(H1) and (H2). Table 2 shows the estimation results of Equation (8).

The coefficients of LINK, BIO, and ln(FOLLOWERS) are all significantly positive,

which supports (H1) and (H2). We notice that ln(FRIENDS) is also significantly positive,

although the effect is much weaker compared with other explanatory variables. This is

reasonable since the more people a Twitter user is following, the more likely they will have

conversation on Twitter, which leads to more updates.

Table 2: OLS Estimation Results of Hypothesis 1 & 2

Variable coefficient t-value
LINK 0.29195*** 116.71
BIO 0.34199*** 76.762
ln(FOLLOWERS) 0.69024*** 620.81
ln(FRIENDS) 0.027822*** 23.435
Constant -4.7516*** 1881.4
R2 0.42842 -
Observations 2,891,298 -

Figure 3 shows the first 50 points of SAMPLE0 in the form of a histogram. The horizon-

tal axis is UPDATERATE × 100 and the vertical axis is the number of users. So each bin

represents the users with UPDATERATE falling in the range of the bin. It is clear from

Figure 3 that content consumers constitute a large proportion of the Twitter community.

The model estimation of Equation (13) using SAMPLE1 is shown in Table 3, which
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Figure 3: Histogram of Updates By Sample Twitter User

clearly supports Hypothesis 3. The R-squared is reasonable. 9

Table 3: OLS Estimation Results of Hypothesis 3

Variable coefficient t-value
ln(UPDATERATE) -4224.4*** 6.0098
Constant 4300.0*** 4.9947
R2 0.473 -
Observations 499 -

Finally, we use the same sample of Twitter users to construct SAMPLEk, k = 2, 3, · · · , 100

and estimate Equation (13). As a comparison, we also use 100 randomly generated subsam-

ples from SAMPLE1 with size from 400 to 499 to run regression. Figure 4 shows how the

R-squared changes as we use different subsamples to estimate.

As we can see, for the randomly selected subsamples, there is no clear relationship between

the R-squared and the size. However, for the R-squared of SAMPLEk, k = 0, 1, · · · , 99, the

trend is very clear. First, by switching from SAMPLE0 to SAMPLE1, the R-squared

increases from 0.266 to 0.473, which results from the fact that the content consumers are

excluded from the samples. As m keeps increasing, the R-squared also increases, which

9If we use SAMPLEm with larger m, the R-squared increases significantly and reaches values higher
than 0.9.
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supports Hypothesis 4.
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Figure 4: R2 of SAMPLEm

6 Conclusion and Limitations

What is the key innovation of social media services like Twitter? Inspired by the famous

saying by Herbert Alexander Simon on the relationship between information and attention,

we conceptualize a social media environment as an economy where people supply content

to get attention and “purchase” content through the supply of attention. Although the un-

derlying mechanisms of how users obtain utility from attention might vary from economic

incentives to psychological and sociological motivations (e.g., status seeking, social connec-

tion), we treat them abstractly as users’ taste for attention. To further study the feature

of this attention economy and better understand the phenomena observed in many social

media sites, we developed a game-theoretical model and studied the interaction among the

players in the economy with the additional assumption of large population.

We find that there exists a community wage for contributing content and users have

two individual reservation wages: one is the reservation wage for becoming a producer (the
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high reservation wage) and the other is the reservation wage for becoming a consumer (the

low reservation wage). If the community wage is larger than the high reservation wage, the

user becomes a content producer. If the community wage is less than the low reservation

wage, the user becomes a content consumer. If the community wage falls between these

two reservation wages, the user becomes a prosumer. The proportion of prosumers in the

community crucially depends on how concave the consumption part of the utility function

ψ(·) is. The more concave ψ(·) is (i.e., the less marginal utility a user will get if she spends

more time consuming content), the larger the prosumers’ proportion is. In the extreme

case when ψ(·) is linear, there are no prosumers in the community almost surely: users

become either content producers or content consumers. This partition equilibrium outcome

is both theoretically interesting and practically suggestive. We have shown that under the

assumption of a partition equilibrium, the system characterizing the macro-level content

consumption and production is stable in the sense that there is an asymptotically stable

equilibrium point involving massive content production and consumption. This result gives

strong support to the sustainability of social media.

To bring theory to practice, we collected from Twitter nearly 3 million user profiles that

contains information about each user’s frequency of contributing content and each user’s

individual characteristics. The four hypotheses we proposed based on our theoretical model

are all strongly supported by the empirical study.

Our theoretical model and empirical study suggest that the unique innovation of social

media is recognizing and connecting people’s need for information and attention. A practical

implication of this is that social media services should be designed in a way that facilitate

its role as a marketing place that connects people’s need for information and attention. For

example, a decentralized content structure where content is accessed at authors’ individual

(and possibly customized) directory is an effective way of boosting the market for exchange

of content and attention.
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Although we believe our work has provided important insights into our understanding

of social media and user-generated content in general, there are limitations in both the

theoretical modeling and the empirical study. First, we haven’t fully characterized the

equilibrium in the general case when ψ(·) is nonlinear, although we point out the two limit

conditions in Proposition 1. The model becomes intractable when we try to solve analytically

each prosumer’s optimal w. One way to extend our model is to run computer simulation to

further explore properties of the equilibrium. In our model, we have a very simple treatment

of content measurement and competition among content suppliers. It is interesting to study

the content competition in the social media environment with a more comprehensive model

similar to the one in Mullainathan and Shleifer’s model (2005). Second, our empirical study

is also limited because of the fact that both α and q are unobservable and we have to find

proxy variables for them. In our current dataset, both LINK and BIO are good proxy

variables for α and FOLLOWERS is also a reasonable proxy variable for q. However,

we still need concrete theory as the basis of our choice of proxy variables for the latent

variables. For example, relevant theories and experiments from psychology or sociology might

be particularly useful. Along this line, it is an obvious potential research opportunity to find

a better dataset from Twitter or some other social media sites. Another future research

direction is to extend this paper to incorporate dynamic elements, both theoretically and

empirically. Users may start out with no information at all about an online community. How

do they adjust their behavior dynamically as they learn more about the online community? It

would be interesting to capture this evolution through modeling, as well as through empirical

studying (e.g., by constructing time-series data of user contributions).

Social media supported by user-generated content is now pervasive on the Internet. The

popularity of Twitter and YouTube offers a fascinating glimpse into the economic and societal

impact of social media. This paper opens up an important avenue for future research on the

innovation and evolution of social media.
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7 Appendix: Proofs

Proof of Lemma 1.

Proof. Define:

fi(wi) =
dui
dwi

= −Tiψ′(Ti(1 − wi))φ(S−i) + αiqiTi
∑

j 6=i

S−ij

(S−ij + qiTiwi)2
Tjrj .

It follows that dfi(wi)
dwi

< 0. We need to examine the incentive constraints of the three groups

in equilibrium.

1) Content consumers: IC

For user i ∈ IC , the necessary and sufficient condition for choosing wi = 0 is:

fi(0) = −Tiψ′(Ti)φ(S−i) + αiqiTi
∑

j 6=i

Tjrj
S−ij

≤ 0. (14)

Since
rj
S−ij

= 0 if j ∈ IP and
rj
S−ij

= 1
S−i

if j ∈ IC ,
∑

j 6=i
Tjrj
S−ij

= 1
S−i

∑

j∈IC ,j 6=i Tj +

∑

j∈IM ,j 6=i
Tjrj
S−ij

. Inequality 14 becomes to

αiqi ≤
S−i

TC−i + S−i
∑

j∈IM ,j 6=i
Tjrj
S−ij

ψ′(Ti)φ(S−i) = hC(i)

2) Content producers: IP

For user i ∈ IP , the necessary and sufficient condition for choosing wi = 1 is:

fi(1) = −Tiψ′(0)φ(S−i) + αiqiTi
∑

j 6=i

S−ij

(S−ij + qiTi)2
Tjrj ≥ 0 (15)
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∑

j 6=i

S−ij

(S−ij + qiTi)2
Tjrj =

∑

j∈IC ,j 6=i

S−ij

(S−ij + qiTi)2
Tj +

∑

j∈IM ,j 6=i

S−ij

(S−ij + qiTi)2
Tjrj

=
S−i

(S−i + qiTi)2
TC−i +

∑

j∈IM ,j 6=i

S−ij

(S−ij + qiTi)2
Tjrj

Inequality (15) becomes:

αiqi ≥
(S−i + qiTi)

2

S−iTC−i + (S−i + qiTi)2
∑

j∈IM ,j 6=i
S−ij

(S−ij+qiTi)2
Tjrj

ψ′(0)φ(S−i) = hP (i)

Apparently, a user with hC(i) < αiqi < hP (i) will choose 0 < wi < 1.

Proof of Lemma 2.

Proof. First, we notice that in equilibrium, limn→∞ hC(i) 9 ∞ and limn→∞ hP (i) 9 0.

From that, the fact that limn→∞ S = ∞ is straightfoward. We now prove the other two limit

conditions in (1) and (2) respectively.

(1) If nM/n90 as n → ∞, then we immediately have nM → ∞ as n → ∞. Pick

1 > δ > 0, w > 0 such that ∀n, at least nMδ of those i ∈ IM choose wi > w.10

S−i =
∑

j 6=i
qjTjwj ≥

∑

j∈IM ,j 6=i
qjTjwj ≥ (nMδ − 1)qwT

TC−i

Sβ−i
<

Tn

qβwβT β(nMδ − 1)β
→ 0 as n→ 0

If nM/n→0 as n→ ∞, then we must have TC−i → ∞ because otherwise hC(i) → ∞. Fur-

thermore,
TC
−i

S−i
9 ∞ as n → ∞ because otherwise hP (i) → 0 too. Therefore, limn→∞

TC
−i

Sβ
−i

=

0, ∀β > 1.

10Technically, it is possible that such (δ, w) does not exist. In this case, nM

n
9 0, but wi → 0, ∀i ∈ IM .

This is obviously a very unrealistic situation. Hence, we exclude this pathological case in the paper.

32



(2) If nM/n 9 0, then:

∑

j∈IM ,j 6=i

Tjrj

Sβ−ij
<

nMT

(nMδ − 2)βwβqβT β
→ 0 as n→ 0,

where δ, w are defined in previously.

If nM/n→ 0, then nC/n 9 0 because otherwise
TC
−i

S−i
→ 0, hC(i) → ∞. So we must have

∑

j∈IM ,j 6=i Tjrj < TC−i. Now:

∑

j∈IM ,j 6=i

Tjrj

Sβ−ij
<

Sβ−i
(S−i − qT )β

TC−i

Sβ−i
→ 0 as n→ 0.

Proof of Proposition 1.

Proof. We prove the proposition in three steps.

1) First we show

lim
n→∞

hC(i)

hP (i)
=
ψ′(Ti)

ψ′(0)
.

Using the expressions of hC(i) and hP (i) in Lemma 1, we have:

hC(i)

hP (i)
=

S−iTC
−i

(S−i+qiTi)2
+

∑

j∈IM ,j 6=i
S−ij

(S−ij+qiTi)2
Tjrj

TC
−i

S−i
+

∑

j∈IM ,j 6=i
Tjrj
S−ij

ψ′(Ti)

ψ′(0)
.

Then

TC−i
S−i

− S−iT
C
−i

(S−i + qiTi)2
= TC−i

2S−i + qiTi
S−i(S−i + qiTi)2

qiTi < 2qiTi
TC−i
S2
−i

→ 0 as n→ 0,
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and

∑

j∈IM ,j 6=i

Tjrj
S−ij

−
∑

j∈IM ,j 6=i

S−ij

(S−i + qiTi)2
Tjrj =

∑

j∈IM ,j 6=i
Tjrj

qiTi(2S−ij + qiTi)

S−ij(S−ij + qiTi)2

< 2qiTi
∑

j∈IM ,j 6=i

Tjrj
S−ij(S−ij + qiTi)

< 2qiTi
∑

j∈IM ,j 6=i

Tjrj
S2
−ij

→ 0 as n→ ∞.

Because hC(i) 9 ∞ in equilibrium,
TC
−i

S−i
+

∑

j∈IM ,j 6=i
Tjrj
S−ij

9 0 as n→ ∞. So

lim
n→∞

hC(i)

hP (i)
= lim

n→∞
h(i) =

ψ′(Ti)

ψ′(0)
. (16)

2) Second, we show

lim
n→∞

hC(i)

hC(k)
=
ψ′(Ti)

ψ′(Tk)
, ∀i, k,

∣

∣

∣

∣

∣

∑

j∈Im,j 6=i

Tjrj
S−ij

−
∑

j∈Im,j 6=k

Tjrj
S−kj

∣

∣

∣

∣

∣

=
∑

j∈IM ,j 6=i,k

∣

∣

∣

∣

qkTkwk − qiTiwi
S−ijS−kj

∣

∣

∣

∣

Tjrj +
|Tkrk − Tiri|

S−ik

≤ |qkTkwk − qiTiwi|max(
∑

j∈IM ,j 6=i

Tjrj
S2
−ij
,

∑

j∈IM ,j 6=k

Tjrj
S2
−kj

) +
|Tkrk − Tiri|

S−ik
→ 0 as n→ ∞

It’s easy to show that
TC
−i

S−i
− TC

−k

S−k
→ 0 as n→ ∞.

Since hC(i) 9 ∞,
TC
−i

S−i
+

∑

j∈Im,j 6=i
Tjrj
S−ij

9 0. Hence:

hC(i)

hC(k)
=

TC
−k

S−k
+

∑

j∈Im,j 6=k
Tjrj
S−kj

TC
−i

S−i
+

∑

j∈Im,j 6=i
Tjrj
S−ij

ψ′(Ti)φ(S−i)

ψ′(Tk)φ(S−k)
→ ψ′(Ti)

ψ′(Tk)
.
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3) From 1) and 2), we immediately have

lim
n→∞

hP (i)

hP (k)
= lim

n→∞

hC(i)

hC(k)

hC(k)/hP (k)

hC(i)/hP (i)
=
ψ′(Ti)

ψ′(Tk)

ψ′(Tk)/ψ
′(0)

ψ′(Ti)/ψ′(0)
= 1, ∀i, k.

Since hP (k) 9 0, ∀k, hP (i) − hP (k) → 0, ∀i, k. Denote limn→∞ hP (i) = hP , then

lim
n→∞

hC(i) =
ψ′(Ti)

ψ′(0)
hP .

Proof of Corollary 1.

Proof. By Proposition 1, we need to examine only the case when wi and wk are the interior

solutions of the first-order conditions of user i and user k’s utility maximization problem.

From the proof of Lemma (1), we have:

ψ′(Ti(1 − wi))φ(S−i) = αiqi
∑

j 6=i

S−ij

(S−ij + qiTiwi)2
Tjrj

ψ′(Tk(1 − wk))φ(S−k) = αkqk
∑

j 6=k

S−kj

(S−kj + qkTiwk)2
Tjrj

ψ′(Ti(1 − wi))

ψ′(Tk(1 − wk))
=
φ(S−k)

φ(S−i)

αi
αk

∑

j 6=i
S−ijqi

(S−ij+qiTiwi)2
Tjrj

∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

(1) If Ti = Tk, qi = qk, αi ≥ αk, then, using Lemma 2, one can show that:

lim
n→∞

∑

j 6=i
S−ijqi

(S−ij+qiTiwi)2
Tjrj

∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

= 1.

Hence,

lim
n→∞

ψ′(Ti(1 − wi))

ψ′(Tk(1 − wk))
=
αi
αk

≥ 1
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which implies that wi ≥ wk.

(2) If Ti = Tk, αi = αk, qi ≥ qk, then using Lemma 2, one can show that:

lim
n→∞

∑

j 6=i
S−ijqi

(S−ij+qiTiwi)2
Tjrj

∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

=
qi
qk
.

Hence,

lim
n→∞

ψ′(Ti(1 − wi))

ψ′(Tk(1 − wk))
=
qi
qk

≥ 1,

which implies that wi ≥ wk.

Proof of Proposition 2.

Proof. The “if” part is clear from Proposition 1 and is explained in the paper. The “only if”

part could be similarly proved. Suppose limn→∞
nM

n
= 0; then we must have limn→∞

nP

n
> 0

because otherwise Lemma 2 will be violated. Hence,

lim
n→∞

∑

j∈Im

Tjrj
S−ij

= 0, lim
n→∞

∑

j∈IM ,j 6=i

S−ij

(S−ij + qiTi)2
Tjrj = 0

which implies that

lim
n→∞

hC(i) =
S

TC
ψ′(Ti) lim

n→∞
φ(S), lim

n→∞
hP (i) =

S

TC
ψ′(0) lim

n→∞
φ(S).

With continuous distribution of (α, q, T ), if ψ′′(·) < 0, then there is always a positive propor-

tion of users who have hC(i) < αiqi < hP (i) as n→ ∞, and those users choose ri > 0, wi > 0.

Hence nM

n
9 0, which is a contradiction.

Proof of Corollary 2.

Proof. In a partition equilibrium, the utility function simplifies to:

ui = ψ(Ti(1 − wi))φ(S−i) + αiqiTiwi
TC
S
.
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since rj = 1, wj = 0 if j ∈ IC and rj = 0, wj = 1 if j ∈ IP .

If i ∈ IC , then wi = 0 and S−i = S which implies uCi = ψ(Ti)φ(S). On the other hand,

if i ∈ IP , uPi = αiqiTi
TC

S
.

From Proposition 1, we know in a partition equilibrium that

lim
n→∞

hC(i) = lim
n→∞

hP (i) =
S

TC
ψ′(0) lim

S→∞
φ(S) =

S

TC
= h

and that S =
∑

αiqi>h
qiTi, T

C =
∑

αiqi<h
Ti; thus, h is determined by:

h =

∑

αiqi>h
qiTi

∑

αiqi<h
Ti

, (17)

which always has a solution in (0, αq).

Proof of Corollary 3.

Proof. The original threshold h is determined by:

h =

∑

αiqi>h
qiTi

∑

αiqi<h
Ti

. (18)

Denote h′ as the threshold after the shift and ĥ as the threshold that keeps the same

group of people content consumers/producers (i.e.,
∑

α′

iqi<ĥ
Ti =

∑

αiqi<h
Ti or

∑

αiq′i<ĥ
Ti =

∑

αiqi<h
Ti).

If the population shifts up in α, then:

h′ =

∑

α′

iqi>h
′ qiTi

∑

α′

iqi<h
′ Ti

(19)

and

h =

∑

α′

iqi>ĥ
qiTi

∑

α′

iqi<ĥ
Ti

. (20)
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We must have h′ ≥ h because otherwise the RHS of (19) is greater than (18), which leads

to contradiction. From this result, we must have h′ < ĥ because otherwise the RHS of (19)

is smaller than (20), which also leads to contradiction. This result implies that more users

will become content producers and that more content will be generated.

If the population shifts up in q, then similarly we would have h′ ≥ h. Now suppose S ′ =
∑

αiq′i>h
′ < S =

∑

αiqi>h
(i.e., h′

∑

αiq′i<h
′ Ti < h

∑

αiqi<h
Ti), then

∑

αiq′i<h
′ Ti <

∑

αiqi<h
Ti,

which implies h′ < h, which is a contradiction. Hence, we must have S ′ > S (i.e., more

content will be generated after an upward shift of q).

Proof of Proposition 3.

Proof. Given users’ choice of Ti, i = 1, 2, · · · , n, the partition equilibrium will be played.

Denote user i’s utility by uCi if he is a content consumer and uPi if he is a content producer.

From Corollary 2 and our assumption of a quadratic cost function, we have:

uCi = Tiφ(S)τ − 1

2θi
T 2
i , u

P
i =

TC
S
αiqiTi −

1

2θi
T 2
i ,

where S =
∑

i∈IP qiTi.

In the equilibrium, each user’s choice of Ti maximizes her utility, so we have















TCi = φ(S)τθi, i ∈ IC

T Pi = TC

S
αiqiθi, i ∈ IP .

(21)

Summing up over i ∈ IC for the first equation, we get TC =
∑

i∈IC φ(S)τθi. Multiplying by qi

on both sides of the second equation and summing up over i ∈ IP , we get S =
∑

i∈IP
TC

S
αiq

2
i θi.

By Proposition 1, i ∈ IC if αiqi <
S
TC and i ∈ IP if αiqi >

S
TC . So (S, TC) is the solution to

Equation (6).
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Lemma 3. Under the assumptions of φ(0) = 0, φ′(S) > 0, and φ′′(S) < 0,

βφ(S) > φ′(S)S, ∀S > 0, β ≥ 1

Proof. Denote f(S) = βφ(S) − φ′(S)S, f ′(S) = βφ′(S) − φ′(S) − Sφ′′(S) = (β − 1)φ′(S) −

Sφ′′(S) > 0, ∀S > 0, β ≥ 1. Because f(0) = 0, f(S) > 0, ∀S > 0.

Notes on the definition of equilibrium point:

A vector x̄ is an equilibrium point for a time-invariant dynamic system x(t+1) = f(x(t))

if once the state vector is equal to x̄ it remains equal to x̄ for all future time (i.e., x̄ = f(x̄)).

An equilibrium point x̄ is stable if there is an R0 > 0 for which the following is true: For

every R < R0, there is an r, 0 < r < R, such that if x(0) is inside the spherical region

S(x̄, r), then x(t) is inside S(x̄, R) for all t > 0. An equilibrium point x̄ is asymptotically

stable whenever it is stable and there is an R̄0 > 0 such that whenever the state is initiated

inside S(x̄, R̄0), it tends to x̄ as time increases.

Proof of Proposition 4.

Proof. From the proof of Proposition 3 we know:















TC =
∑

i∈IC φ(S)τθi

S =
∑

i∈IP
TC

S
αiq

2
i θi

. (22)

Denote:














k1 =
∑

i∈IC τθi

k2 =
√

∑

i∈IP αiq
2
i θi

.

Then we obtain Equations (7), which characterizes the content consumption and pro-

duction at the macro-level. From Equations(7), we have S∗2 = k1k
2
2φ(S∗). Although,
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(S∗, TC∗) = (0, 0) is always a solution, there is at least one solution (S∗, TC∗) 6= (0, 0)

since φ′(0) > 0, limx→∞ φ(x) <∞.

The proof of asymptotic stability of this equilibrium point is a simple application of

Liapunov’s indirect method:

G =







∂g1
∂TC

∂g1
∂S

∂g1
∂TC

∂g1
∂S






=







0 k1φ
′(S)

k2
2
√
TC

0






(23)

The eigenvalues of G satisfy |λ|2 = k1k2φ′(S)τ

2
√
TC

. We need to determine whether |λ| < 1 at the

equilibrium point (TC∗, S∗):

|λ| < 1 ⇐⇒ k1k2φ
′(S∗) < 2

S∗

k2

, (24)

⇐⇒ k1k
2
2φ

′(S∗)S∗ < 2S∗2 = 2k1k
2
2φ(S∗), (25)

⇐⇒ φ′(S∗)S∗ < 2φ(S∗). (26)

The last inequality is ensured by Lemma 3

References

Andreoni, James. 1989. “Giving with Impure Altruism: Applications to Charity and Ricar-

dian Equivalence.” Journal of Political Economy, 97(6): 1447-1458.

Bock, Gee-Woo, Robert W. Zmud, Young-Gul Kim, and Jae-Nam Lee. 2005. “Behavioral

Intention Formation in Knowledge Sharing: Examining the Roles of Extrinsic Motivators,

Social-psychological Forces, and Organizational Climate.” MIS Quarterly, 29: 87-111.

Feldman, Michal, Christos Papadimitriou, John Chuang, and Ion Stoica. 2006. “Free-

Riding and Whitewashing in Peer-to-Peer Systems.” IEEE Journal on Selected Areas in

Communications, 24: 1010-1019.

40



Guo, Lei, Enhua Tan, Songqing Chen, Xiaodong Zhang and Yihong Zhang, 2009. “Analyzing

Patterns of User Content Generation in Online Social Networks.” Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 369-

378.

Huberman, Bernardo A., Daniel M. Romero and Fang Wu. 2008. “Crowdsourcing, Attention

and Productivity.” Working Paper.

Jeppesen, Lars Bo and Lars Frederiksen. 2006. “Why Do Users Contribute to Firm-hosted

User Communities? The case of Computer-controlled Music Instruments.” Organization

Science, 17(1): 45-63.

Kandori, Michihiro. 1962. “Socila Norms and Community Enforcement.” Review of Eco-

nomic Studies, 59(1): 63-80.

Katona, Zsolt and Miklos Sarvary. 2008. “Network Formation and the Structure of the

Commercial World Wide Web.” Marketing Science, 27(5): 764-778.

Lerner, Josh, Parag A. Pathak and Jean Tirole. 2006. “The Dynamics of Open-Source

Contributors.” American Economic Review, 96(2): 114-118.

Mullainathan, Sendhi, and Andrei Shleifer. 2005. “The Market for News.” American

Economic Review, 95(4): 1031-1053.

Robert, Jeffrey A., II-Horn Hann, and Sandra A. Slaughter. 2006. “Understanding the Moti-

vations, Participation and Performance of Open Source Software Developers: a Longitudinal

Study of the Apache Projects.” Management Science, 52(7): 984-999.

Shah, Sonali K. 2006. “Motivation, Governance and the Viability of Hybrid Forms in Open

Source Software Development.” Management Science, 52(7): 1000-1014.

41



Simon, Herbert. 1971: Designing Organizations for an Information-Rich World. The Johns

Hopkins Press.

Sohn, Dongyoung and John D. Leckenby. 2007. “A Structural Solution to Communication

Dilemmas in a Virtual Community.” Journal of Communication, 57(3): 435-449.

Wasko, McLure and Samer Faraj. 2005. “Why Should I Share? Examining Knowledge

Contribution in Electronic Networks of Practice.” MIS Quarterly, 29: 1-23.

42


