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Abstract

Motivated by common practices in the reinsurance industry and in insurance
markets such as Lloyd’s, we study the general problem of optimal insurance con-
tracts design in the presence of multiple insurance providers. We show that the op-
timal risk allocation rule is characterized by a hierarchical structure of risk sharing
where all agents take on risks only above the endogenously determined thresholds,
or agent-specific deductibles. Linear risk sharing between two adjacent thresholds
is shown to be optimal when all agents have CARA utilities. Furthermore, we
show that the optimal thresholds can be efficiently calculated through the fixed
point of a contraction mapping.
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1 Introduction

The modern theory of efficient risk sharing goes back to the fundamental paper by
Borch (1962), who characterized efficient risk sharing among several agents (typically
more than two) with heterogeneous preferences. Based on this research, Wilson (1968)
further developed the theory of syndicates. Both Borch and Wilson based their analysis
on an important assumption that a complete set of state-contingent contracts is available
for risk allocation. In many real-life situations, however, insurers are willing to take only
risks that do not exceed a certain level. This situation is particularly true for insurance
contracts, for which the corresponding insurance reimbursements (coverage functions)
are always assumed to be non-negative and lower than the total loss. As has been
shown by Arrow (1971, 1973) and Raviv (1979), such a feature of insurance policy may
significantly alter the structure of optimal risk allocation. Namely, the efficient risk-
sharing rule between two agents (i.e., the insured and the single insurance provider) is
generally characterized by the presence of a deductible. The goal of this paper is to
extend Raviv’s (1979) seminal characterization of optimal insurance design to the case
of multiple insurers.

For insurance against loss that can potentially be very large, multiple insurance
providers are typically involved to achieve more efficient risk sharing.! A well-known
example is the so-called subscription model at Lloyd’s, the world’s leading insurance

market providing specialist insurance services to businesses.” At Lloyd’s, almost any

1By distributing large risk across many entities, insurance companies, large and small, can offer
coverage limits to meet their policyholders’ needs. This is very important for a more competitive
insurance market.

2In his speech on the future of the insurance industry, Lord Levene, the former chairman of Lloyd’s,
said that “The first point which I want to make about the future of insurance is that the subscription
model is not just alive and well — it is thriving. Lloyd’s made record profits in 2009. Throughout
the financial crisis, it maintained A+ ratings. Over three hundred years, it has never failed to pay a
valid claim.” Source: http://www.lloyds.com/Lloyds/Press-Centre/Speeches/2011/03 /The-Future-of-
the-Insurance-Industry.



single risk is insured by multiple insurers. As is stated on its website, “much of Lloyd’s
business works by subscription, where more than one syndicate takes a share of the
same risk.”? This is also a well-established practice among insurers generally.” Another
example of allocating risk among multiple insurance providers is when an insurance
company purchases insurance from multiple reinsurers.” Reinsurance is an indispensable
and significant part of the insurance industry and “many reinsurance placements are not
placed with a single reinsurer but are shared between a number of reinsurers.”’

Despite its practical importance, there has been limited amount of research on opti-
mal risk sharing in the presence of more than two insurance providers and the practical
constraint that the insurance reimbursement is nonnegative and cannot exceed the size
of the loss. The industry practice, which typically involves both proportional and excess
of loss contracts with multiple agents offering insurance coverage, seems to be ad-hoc and
lacks a strong theoretical basis.” This paper fills the gap in the literature by studying the
optimal design of insurance contracts with multiple agents offering insurance coverage
that satisfies the practical constraints. We also take into account of the intertemporal
nature of insurance, which is a realistic aspect given that there is always a (sometimes
significant) delay between the insurance premium payment and the arrival of an insur-
ance event. We endogenize this by introducing intertemporal utility maximization for all

agents. The framework in this paper applies both to the insurance scenario and the rein-

3Source: http://www.lloyds.com/lloyds/about-us/what-is-lloyds.
4See, for example, page 167 of Thoyts (2010) for more discussion.

5According to Reinsurance Association of America, “reinsurance is a transaction in which one in-
surance company indemnifies, for a premium, another insurance company against all or part of the loss
that it may sustain under its policy or policies of insurance.”

6Source:http://en.wikipedia.org/wiki/Reinsurance.

"Reinsurance policies can be categorized according to whether they are proportional or non-
proportional with excess of loss contract being the prime example of the latter. An insurance com-
pany often purchases several insurance policies of different types from multiple reinsurers and combine
these policies to form multiple layers of insurance protection. Chapter 7 of Thoyts (2010) explains with
detailed examples how different types of reinsurance policies work.



surance scenario. For ease of illustration, we call the agent seeking insurance coverage,
whether a client of an insurance company or an insurance company itself, the insured,
and the agents offering insurance coverage, whether insurance companies or reinsurance

companies, the insurers.

Our first result implies that the practical constraints on insurance contracts, together
with insurers’ heterogeneity, naturally give rise to optimal claims splitting through a
tranche structure, with different tranches characterized as the regions for which these
constraints are binding for different groups of insurers. The total uncertain loss is di-
vided into several tranches, whose boundaries are the insurer-specific deductibles. Differ-
ent insurers provide partial coverage for losses inside multiple tranches. This prioritized
tranche-sharing structure with multiple deductibles is very intriguing. It arises because
of insurers’ risk aversion and the heterogeneity of their marginal valuations. The in-
sured optimally insures the first tranche above the minimal deductible with the insurer
requiring the lowest marginal premium. Because this insurer is risk averse, the marginal
premium increases with the level of losses. Just as the level of losses reaches the next
deductible level, the first insurer’s marginal premium reaches that of the second-highest
ranked insurer, and it becomes optimal for the insured to buy co-insurance of the subse-
quent tranche from this second-highest ranked insurer. Continuing the process gradually,
as the level of losses increases, insurers with higher marginal premia start participating

in the trade, until the whole range of loss is exhausted.

To efficiently compute the optimal deductible levels and the co-insurance scheme
within each tranche, one needs to compute the endogenously determined minimal marginal
rate of intertemporal substitution (MMRIS) of each agent. Our second result is that the
insurers’” MMRIS can be calculated through the fixed point of an explicitly constructed
contraction mapping. This result is crucial, both for the computation of optimal indem-

nities and for studying the dependence of deductibles on microeconomic characteristics.



In particular, we use this result to compute numerical examples of the optimal insurance
contracts.

The rest of this paper is organized as follows: In Section 2, we review the relevant
literature. In Section 3, we formulate the optimal insurance design problem and char-
acterize optimal indemnities for a finite number of insurers. In Section 4, we show how
the optimal contracts can be computed using the fixed point of a contraction mapping
and provide several important comparative statics results. In Section 5, we conclude the

paper and point out some future research directions. All proofs are in the Appendix.

2 Related Literature

This paper extends the classical results of Borch (1962) and Wilson (1968) and can there-
fore be applied to a large variety of economic problems such as Walrasian equilibrium
allocations in complete markets under constraints. In particular, since we allow for het-
erogeneous discount factors, our results are related to those of Gollier and Zeckhauser
(2005), who studied the effect of such a heterogeneity on efficient intertemporal allo-
cations.® We show that the practical constraints on insurance contracts together with
heterogeneity in discount factors may lead to the failure of classical aggregation results.

In the literature on optimal insurance design, the study most closely related to ours
is that of Raviv (1979). He considered the same optimal insurance problem as ours, but
with a single insurer and provided necessary and sufficient conditions for the optimality
of a deductible. Thus, our results on the optimal insurance design can be viewed as
an extension of Raviv (1979) to the case of multiple insurers. In addition, in contrast
to Arrow (1971) and Raviv (1979), we also study the intertemporal aspect of optimal

insurance design. This allows us to express the optimal allocation in terms of the marginal

8See also a recent paper by Kazumori and Wilson (2009) that studied general efficient intertemporal
allocations and extended Wilson (1968) to a dynamic setting.



rates of intertemporal substitution and to link them to various agents’ characteristics.

Numerous papers have studied the optimality of deductibles in optimal insurance de-
sign in various settings, extending the original model of Raviv (1979). See, for example,
Doherty and Schlesinger (1983), Huberman, Mayers and Smith (1983), Blazenko (1985),
Gollier (1987), Gollier (1996), Gollier and Schlesinger (1995,1996), Gollier (2004), and
Dana and Scarsini (2007). Eeckhoudt, Gollier, and Schlesinger (1991) studied the de-
pendence of the optimal deductible on the distribution of losses. Researchers in all of
these studies assumed that there is a single insurer. The only class of models with multi-
ple insurers that has been extensively studied in the insurance literature corresponds to
risk sharing among insurers through a secondary complete capital market, which is not
always available in many actual situations. See Aase (2014) for an overview and Citanna
and Siconolfi (2015) for more recent development.

Cohen and Einav (2007) and Cutler, Finkelstein and McGarry (2008) found empiri-
cal support for the importance of preferences heterogeneity in insurance design and its

impact on the optimal deductible choice.

3 The Model

The model’s participants consist of an insurance buyer (the insured) and a set of N
insurance sellers (the insurers). The insurance buyer faces the risk of a random loss,
described by a nonnegative bounded random variable X with the largest potential loss
esssupX = X. In addition, the insurance buyer is endowed with other (not explicitly

modeled) assets, generating a non-stochastic cash flow (wg, wy).” The insurance buyer

9The assumption of non-stochastic cash flows can be relaxed as long as wi; is independent of X.
Indeed, in this case we can redefine the utilities @;(c) = Efu;(wy1; + ¢)], and then rewrite the problem
in their terms. The assumption of independence does make sense for many real world settings where
insurance is acquired against specific risks (e.g., a local natural disaster). However, if insurers’ income is
correlated with X, the structure of the risk sharing may change completely. We leave it as an interesting
topic for future research. Our techniques can also be directly extended to allow for hedging and raising
cash using a bond market.



is an intertemporal expected utility maximizer, with von Neumann-Morgenstern utility
U and a discount factor 9.

To (partially) insure against potential random loss X, the insured designs a basket
Fi(X),i=1,---, N of insurance contracts (also known as indemnity schedules, or, cov-
erage functions), contingent on the realization of the loss X. Because we are interested
in the risk sharing problem, we assume that there is no asymmetric information and
therefore the true probability distribution of X is known to all market participants.'” A
basket of coverage functions is called admissible if, for all ¢, F;(X) > 0 for all values of
X and

N
F=> F<X
i=1

That is, we assume that insurance reimbursement is always nonnegative and the total
reimbursements cannot exceed the size of the loss. Given an insurance contracts design
{F;}Y |, the insured retains exposure to the residual loss X — F.

Insurance can be bought from N insurers. Insurer ¢ is endowed with a non-stochastic
income flow (wy; , wy;). Each insurer is an intertemporal expected utility maximizer, with
a von Neumann-Morgenstern utility u; and a discount factor ¢;. All utility functions are
assumed to be twice continuously differentiable, increasing, and concave on their domain
of definition.

We assume that the insured can choose any basket satisfying the aforementioned
admissibility conditions. The price, paid by the insured to insurer i (i.e., the insur-
ance premium for the coverage function F;) is denoted by P; = P;(F;). Both insurance
provision and insurance design are potentially costly due to administrative expenses, un-
derwriting cost, broker commission, and so on. These costs are a deadweight loss to both

insured and insurers and we assume the cost is proportional to the insurance premium

10The probability distribution of X is exogenously given and all market participants agree on it. Note
that we actually do not need to require that market participants know the true distribution of X, but
rather that they have the same beliefs about it.



P;."' Without loss of generality, we assume only the insured incurs cost and denote «
the proportion.'?

As is common in the literature on optimal insurance design (see, e.g., Raviv (1979)),
we assume that insurer ¢ is willing to provide insurance coverage for F;(X) if and only if

the premium P; satisfies the insurer’s participation constraint

ui(coi) + 0; Elui(c)] > Ly, (1)

where

coi = wo + P, c; = wy — Fi(X) (2)

is the insurer’s consumption after entering the contract and

L = ui(we) + 6 ui(ws;)

is the insurer’s reservation utility."® Given the contracts (P;, F;),i = 1,---, N, the

Y Arrow (1971, p.204) writes: “It is very striking to observe that among health insurance
policies of insurance companies in 1958, expenses of one sort or another constitute 51.6 per-
cent of total premium income for individual policies, and only 9.5 percent for group policies.”
This supports the assumption that the cost is proportional to the premium size, and suggests
that a proportional between 0.1 and 0.5 may be a reasonable, depending on the precise cir-
cumstances.  Insurance broker commission is a fixed percentage of the premium quoted by
an insurer. This also gives direct evidence of our way of modeling insurance cost. Source:
http://www.willis.com/documents/publications/General_Publications/How_We_Get_Paid.pdf

2Indeed, if we assume both the insured and the insurers incur proportional cost, with proportion 7
and 6 respectively. Then, insurer 7 is only getting a fraction of (1 — 0)P;, whereas the insured is actually
paying (1 + 7)P;. Therefore, this model is equivalent to one in which insurance provision costs are zero

(i.e., @ = 0), whereas insurance coverage costs are given by a = % —

13The assumption that the reservation utility coincides with the utility before entering the contract

is made for technical purposes, to avoid discontinuities in the price P;.



insured’s consumption is given by:
cozwo—(1+a)ZB g = w — X + F(X). (3)

The problem of the insured is thus to design an admissible basket (F;) so as to maximize
his expected utility,
Ulco) + 6E[U(cr) ],

under the budget constraints (3) and participation constraints (1).
Clearly, the insured will always optimally choose the premium to bind participation

constraints (1) for the insurers, and therefore the insurance premium satisfies
Pi(Fi) = —woi + vi(Li — 6 Elui(wy — Fi(X))]), (4)

where v; is the inverse of the insurer’s utility: v;(u;(x)) = =x.

Here, it should be pointed out that the preference parameters (0;, u;) should not
be interpreted directly as the “true” preferences of the insurers. Rather, it is a simple
(and necessarily stylized) way of incorporating intertemporal substitution attitudes and
risk aversion into insurance pricing. For example, if insurer ¢ is risk neutral, we get
P,(F;) = 6;E[F;]. This result is the classical actuarial fair value premium rule (see,
e.g., Borch (1962)), and the difference ¢; = §; — 1 is commonly referred to as the fixed
percentage loading. In particular, it is always assumed that ¢; > 0, that is §; > 1. Thus,
in our setting, we will allow for discount factors d; > 1 and assume that ¢§; incorporates
both time discounting and fixed percentage loadings.

Before we characterize the optimal contract structure, it is important to understand
the intuition why purchasing insurance from multiple agents might be desirable. Let

us first examine the case in which all insurers are risk neutral. In that case insurer



is willing to accept the premium P;(F;) = ¢; E[F;(X)] for an indemnity F;. Therefore,
diversifying between different insurers is never optimal for the insured. The insurer with
the smallest discount factor d,,;, will always be the one to provide the cheapest insurance,
and the insured will always buy insurance against the total indemnity F' =", F; from
this insurer because the premium is linear.'* However, when insurers are risk averse, the
situation is completely different because the marginal premium that an insurer requires
for providing insurance against an additional unit of X is monotone increasing with
the level of X. We illustrate this using a conceptual example with two insurers, 1
and 2, as in Figure 1. After the deductible is reached, insurer 1 provides coverage
first because her insurance premium is lower than the insurance premium of insurer
2. This is clearly demonstrated from the right panel which shows the marginal rate of
intertemporal substitution (MRIS) of each agent. However, as the level of X becomes
sufficiently high, insurer 1’s period-1 consumption decreases, pushing up her MRIS which
eventually becomes higher than that of insurer 2. It thus becomes desirable for the insured
to buy (partial) insurance against the high-level portion of X from insurer 2. With F;
optimally designed, the MRIS of those agents who absorb loss are equalized at any loss
level.

Since the optimal allocation for the insurance design problem is constrained efficient,
it can be solved in two steps: (1) solve the constrained social planner problem with
fixed Pareto weights assigned to all market participants (both insurers and the insured);
(2) find the endogenous Pareto weights from the insurers’ participation constraints. In
order to formulate the social planner’s problem, define Fyy; = X — ). F;(X) and let

unt1(c) = U(c), convg1) = €0, Ont1 = 0, and wyvy1) = wi. Then, the constrained

YIndeed, >, Pi(F;) > 6min ., E[Fi].
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Figure 1: The left panel plots the coverage functions (i.e., F1(X) and F5(X)) and retained loss (i.e.,
X — F1(X) — F»(X)) against the loss (X). The right panel plots the MRIS of each agent against the
loss.

optimal allocation solves the social planner’s problem

N+1

max 4 > pi (wileor) + 6 Blus(wn — F(X)))) (5)

i=1
under budget constraints (2) and (3), and the solution, which depends on u; — the
weight that the social planner assigns to agent ¢, will be evaluated using the insurers’
participation constraints. The Pareto weights are given by

1 1
P = ,i=1,-- N, d e
M e ST 1T ) ()

As we will show below, the optimal allocation will be fully determined by the minimal

marginal rates of intertemporal substitution (MMRIS)™ 10

Y, =
u;(coi)

i=1,---,N,

5i u;(cli) 5L u;(wh)

151t is minimal because c1; = wy; — F;(X) < wy; and therefore o) 2 "o

6Note that fixing Y; is equivalent to fixing the insurance premia P;(F;) because co; = wo; + P;(F};)
and cg = wo — (1+a) >, Pi(F).

10



of the insurers and the insured’s MMRIS

) U/(U)l)

Y s A vl

Definition 1 For an insurer i, we denote by rank(:) the number that insurer i will have
when all insurers are reordered so that smaller rank(i) implies larger Y;. Furthermore,

we denote by J the number of insurers for which Y; is larger than Y .

Note that the MMRIS of insurer ¢ depends on c¢;9, which is an endogenous object
determined by the optimal choice of P,y by the insured. Consequently, the rank that
insurer ¢ gets assigned is also endogenous and depends on all other parameters of the
model.

/

17! (x) as the inverse function of insurer i’s marginal utility function

Denote ¢;(z) = (u
and Q(z) = (U')"!(x) as the inverse function of insured’s marginal utility function. We

define insurer-specific deductibles Z3, - - , Zy below.

Definition 2 For each:1 = 1,---,N, let:

S 1+ a)U'(co) '

ai = (Opn1) i = 6; " ul(coi)

Fizk €{0,1,--- ,N,N +1}.

o Fork =0 we define Zy = X.

o For1 <k<J, let K = rank '(k) be the insurer whose rank is equal to k and

Zi, = w — Qagx u(wik)) + Z (w1 = qi (a7 " ag wie(wik)))  (7)
i:rank(7)>k+1

and

Zk = min{)_(, Zk}

11



o Fork=J+1 we define:

Zyp = Z (wu — g (U/(wl) @;1> ) ;

i : rank(7)>J+1

and

ZJ+1 = min{X, ZJ+1}.

o for J+2<k<N,let K = rank_l(k’—l) and

and

Zk = min{X, Zk}

o For k=N + 1, we define Zn,1 = 0.

We denote Tranche; = Tranche(Z;;1, Z;) where Tranche(a, b) is defined as

Tranche(a,b) = <+ _ 4 , € (a,b)>

The definitions above is summarized below:

Tranche y=Tranche(Zn41,Zn) Trancheg
7\

0= Zny < Iy < <Zyy < Z;<---<7

-~

Tranche y

< Zy=X.

The following theorem is an extension of the seminal Raviv (1979) characterization

of the optimal insurance design for the case of multiple insurers.

12



Theorem 1 There always exists a unique optimal allocation {F;}X . It is non-zero (i.e.,

F(X) #0) if and only if:

SU' (w; — X) > min ; wi(wy;)

(1+ ) U'(wp) T (we) (10)

If (10) holds, then the following is true:

(1) Optimal indemnities F; and the uninsured part X — F(X) are continuous and

(weakly) monotone increasing in X ;
(2) If Y; > Y, then insurer i only participates in Tranche; if j < rank(i) —1;
(3) If Y; <Y, then insurer i only participates in Tranche; if j < rank(i);

(4) The insured buys full insurance (i.e., F(X) = X ) against the part of X below Z ;4

and retains a partial exposure to X (i.e., F(X) < X) for X > Zj41.

(5) For each Tranche;, there ezists a function £;(X) such that:

diui(cn) & (X) (1)

!/
w;(coi)
for each insurer v participating in Tranche;. Furthermore,

(5-a) If 5 > J+ 1 (full insurance region), then:

U (1)
£(X) < A+ a) V(e and
(5-b) If j < J +1, then:
§X) = o (12)

First, we note that Equation (11) and Equation (12) uniquely determine the alloca-

tion. Indeed, substituting ¢;; = wy;—F;(X) into (11) gives F; = wy;—¢;(&(X) u}(co;) 5.

13



Then, for j < J+1, the function &; is uniquely determined by the constraint ), Fi(X) =
X, and for j > J, the function ¢; is uniquely determined by (12) and the insured’s budget
constraint ¢; = wo — X + >, F;(X).

Since both the insured’s consumption ¢; = w; — X + F(X) and the insurers’ con-
sumption ¢y; = wy; — F;(X) are (weakly) decreasing in X, the MRIS of the insured and
the MRIS of the insurers’ consumption are (weakly) increasing in X.

If the MMRIS of all insurers are larger than that of the insured, then there exists
a strictly positive deductible Zy and the tranche Tranchey is not insured at all. After
reaching the deductible, co-insurance becomes desirable. If there is at least one insurer ¢
whose MMRIS is smaller than that of the insured, then the insured buys full insurance
coverage against low levels of X (i.e., z € [0, Z;11]) from the insurer with rank N and
gradually from insurers with ranks above J. As the level of X hits Z;,;, co-insurance
becomes desirable and the insured starts to absorb loss.

After co-insurance is triggered, whenever X hits the next deductible level Z;, it
becomes desirable to purchase insurance coverage from the insurer with rank i.

We conclude this section with a result characterizing the nature of risk sharing within

each tranche. Recall that

is the absolute risk tolerance of agent i. Wilson (1968) showed that the slopes of the
sharing rules in a Pareto-efficient allocation can be characterized in terms of agents’
absolute risk tolerances. The following result is an extension of Wilson’s characterization

for the constrained Pareto-efficient allocation in our model.

14



Corollary 1

d 07 x < Zrank(i)

Ri(c:) x € (Zry1, Z1),0 < k < rank(i) — 1

jrank(j) > k1 F5(c5)?

The intuition behind the formula for the slope is the same as in Wilson (1968): The
fraction of the aggregate risk agent ¢ ends up taking is proportional to agent i’s risk
tolerance. The set of agents with whom agent ¢ is sharing risks, however, depends on

the level of X and changes from tranche to tranche.

4 Fixed-Point Algorithm

By Theorem 1, the optimal allocation is uniquely determined as soon as we know the
rank of every insurer, as well as the thresholds 7. By Definitions 1 and 2, both the ranks
and the thresholds are uniquely determined by the N-tuple of numbers (a;).'” Given the

N-tuple (a;), we denote b; = a;*

as their reciprocals and denote by b = (b;) the
vector of these reciprocals. We denote by (Z;(b), i =0,---, N + 1) the corresponding
thresholds and by (F;(b), ¢ =1,---, N) the corresponding allocation. By definition (see

(6)), the optimal allocation must satisfy:

b — &; ! wj(coi) _ 0; ' uj (wo; + Py(Fi(b))) (13)
1+ U (1 a)5 U (un — (L+a) X, B(ED))
forall ¢ =1,---, N. This is a highly non-linear system of equations for vector b. It is by

no means clear how to solve it analytically or even numerically, nor is it clear how the
solution would depend on the microeconomic characteristics of the model.

In this section we prove that this N-tuple is the unique fixed point of a contraction

1"Note that Y; = m% = aiY%

15



mapping defined on an explicitly given compact set and can therefore be easily calculated
by successive iterations.
We use the common notation b_; to denote the vector of all coordinates of b except
for b;. Let
P = —wo; + v; (L; — 6; Elui(wy; — X))

be the premium that the insurer ¢ is asking for providing full insurance against X,
-1
Couax = (14 0) 07U (wg)) ™, Cowin = <(1+a) s (wo —(1+a) ) Pz‘max>>
and
B = log (Cuin 67 ' uj(wos + P™)) ™ = log (Cuuax 0; " uj(woi)) -

We denote Q = x; [0, gmax] and let ||z]),, = max; |z;] be the l,-norm of a finite
sequence, equal to the maximal absolute value of its elements. The following lemma is

the main technical result of this section.

Lemma 1 (contraction lemma) For each i =1,--- N, there exists a unique, piece-

wise continuously differentiable function H; = H;(C,b_;) solving
HA(C.b) = 671 Cul (wor + P(F (X, (HA(C.b-), b)) ). (14

For any C > 0, the mapping Gc defined via (Go);(d) = log H;(C,e~) maps the

compact set Q into itself and is a strict contraction with respect to || - ||;... Consequently,

18For simplicity, we always assume that the price P™?* is well defined for any insurer i. This as-
sumption is only necessary when dealing with utilities that are either defined on a half-line or are
bounded from above. It can be relaxed at the cost of more technicalities, and we omit it for the reader’s

convenience.

16



there exists a unique fized point d*(C) € Q of this map, solving d*(C) = Ga(d*(C)).

For any dy € 2, we have d*(C) = lim, o (G¢)"(do).

The result of Lemma 1 is quite surprising because it holds under absolutely no re-
strictions on model parameters. In particular, we do not need to impose any smallness
conditions typically used in economic applications of the contraction mapping theorem.

With the fixed point mapping d*(C') defined, we are ready to state the main result

of this section.

Theorem 2 Let b*(C*) = ¢4 where C* € (Cuin , Cax) uniquely solves

C = ((1 +a)6 U’ (wo - (1+a) Z (qi(edz(c)(&C’_l) — w01>>> _ : (15)

The optimal allocation is given by (F;)(b*(C™)).

Theorem 2 provides a directly implementable algorithm for calculating the optimal
allocation: Vector d(C') can be calculated by successive iterations using Lemma 1, and
then C* can be found using any standard numerical procedure for solving (15). Figure
4 provides the flow chart for the implementation of the fixed-point algorithm.

The characterization of the optimal allocation provided by Theorem 2 is perfectly

suited for studying comparative statics. We need the following lemma.

Lemma 2 (comparative statics lemma) If the right-hand sides of (14) and (15) are

monotone increasing in some parameter, then so are C* and d*(C*).

By (7)-(9) and Theorem 1, all deductibles and other characteristics of the optimal
indemnities can be expressed in terms of @; = e~%, thus we can use Lemma 2 to study

the dependence of the optimal allocation on various model parameters.
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{(6i, Ai woi, wii),i = 1,---, N}
v
ComPUte {(ﬁ;minyﬁzmax)ivzl}acminaCmaw ]

l

Guess ¢ € [Crin, Cmaal J

!

‘ Input: loss distribution, (4, A, wg, w1), ’

Set dO — (ﬁ{nzn—gﬂimm D) Bﬁzn;ﬁ?am )7 ] =0
!
Set b/ = (e®, en)
!
Solve H;(¢,b’ ;) fori = 1,--- N no
!
&I = log(H;(c,b’ ;) fori = 1,---,N

| @t -l 07— (i++
lyes
[ d* = d’*!'. Equation 15 satisfied ? J
yes

[ Output ¢, d, and the optimal contracts ]

Figure 2: Flow chart of the fixed point algorithm

Define

Ztull coverage = Max{z : F(z) =2}, Zgeductibe = max{z : F(z) =0}

By Theorem 1, Zg coverage 18 positive if and only if min; ¥; < Y, in which case Zgn coverage =

Zyi1, and Zgequetible 1S positive if and only if min; Y; > Y, in which case Zgequctible = Zn-
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We refer to the insurance tranches that are fully insured as senior tranches and let

#{senior} = #{i:Y; < Y}

be the number of insurers participating in the tranches that are fully insured. By con-
struction, #{senior} is also the number of senior insurance tranches. Finally, for each

insurer ¢ we define:

1, if rank(i) > J
index(i) =

0, ifrank(i) <J
That is, an insurer’s index is one if the insurer participates in the tranches that are fully

insured and zero otherwise.

Definition 3 We say that a change in the parameters of the model leads to more insur-
ance coverage if it leads to an increase (in the weak sense) in #{senior}, Zy coverage:

and index(i) for each i, and to a decrease (in the weak sense) in Zgeductible-

That is, more insurance implies that a larger part of X is fully insured and more insurers
participate in the fully insured senior tranches.

The next result describes the effect of a first-order stochastic dominant (FOSD) shift
in the distribution of X, as well as the effect of changes in the insured’s initial wealth

and discount factor on the optimal allocation.

Corollary 2 A decrease in the distribution of X in the FOSD sense, an increase in wy,
or an increase in 0 lead to more insurance. In particular, there exists a threshold value
for § such that Zaequetibie 45 positive if and only if § is below this threshold," and similarly

for wy.

9Here, we allow 6 to vary and keep the rest of the parameters fixed.
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The fact that larger initial endowment and larger discount factor lead to more in-
surance is very intuitive: Indeed, if § is large, future shocks are more important for the
insured, forcing the insured to acquire more insurance. Similarly, a larger initial capital
wy leads to a smaller marginal loss from buying insurance at time zero, again making
it optimal to buy more insurance. By contrast, the fact that larger losses™ lead to less
insurance is quite surprising. The reason is that, with larger risk, insurance gets more
expensive on average. Therefore, it is optimal for the insured to increase exposure to
low levels of X (achieved by raising the deductible level) and simultaneously increase

insurance coverage for higher levels on X, reducing the probability of large losses.

In general, the ranks that the insured assigns to the insurers may depend in a non-
trivial way on insurers’ preferences and endowments. It turns out, however, that when

all insurers have exponential utility functions, ranks can be characterized explicitly.

Corollary 3 Suppose that all agents have exponential utility functions. Then, the ranks

of the insurers follow the order of their pre-trade MRIS. That is rank(i) > rank(j) if and

only if
8; ui(wy;) 0; U; (w15)

w;(wo; ) wj(woy)

Suppose for simplicity that the insurers’ endowments satisfy wg; = wq;. In this case,
Corollary 3 implies that the rank of an insurer is determined solely by his discount
factor ¢; and is independent of his risk aversion A;. The reason is that, when an insurer’s
risk aversion is constant, the risk premium per unit of risk that the insurer is charging
is independent of the level of X. For any insurer ¢, the insured optimally chooses the
fraction of the total coverage F'(X) that insurer ¢ covers to be proportional to his risk

tolerance A;, thereby equalizing marginal risk premia across the insurers. Therefore, only

20Tn the sense of first order stochastic dominance.
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discount factors §; matter for ranking. In particular, if several insurers have identical pre-
trade MRIS, the tranches in which they participate will be the same, and their coverage
functions will differ only by constant multiples. This situation leads to the following

interesting aggregation result. Denote by A;' the sum of insurers’ risk tolerances:

N
A7 = > A (16)
j=1

The following is true:

Corollary 4 Suppose that wy; = wy;”" for all i, and 6; = 0 is independent of i. Then,

the risk-sharing is linear:
At

F(x)

and F(x) coincides with the optimal indemnity schedule that the insured would choose

with a single representative insurer with risk aversion Aj.

The result of Corollary 4 has a natural interpretation in the framework of the theory
of syndicates developed by Wilson (1968). Namely, Corollary 4 implies that insurers with
identical pre-trade MRIS effectively form a syndicate with the group (syndicate) utility
given by that of the representative insurer. It is interesting to note that, without the
practical constraints on insurance contracts, the syndicate result and the CARA linear
risk sharing rule of Corollary 4 always hold,”* independent of the MRIS of the agents.

However, this aggregation result does not generally hold.

21Due to translation invariance of CARA preferences, optimal allocation depends only on the differ-

ences wi; — wo; and w; — wy of endowments at times zero and one.

22In fact, the risk-sharing rule will generally be affine linear: indemnities may also differ by additive
constants.
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5 Conclusions

In the present study, we extended Raviv’s (1979) seminal characterization of the optimal
insurance design to the case of an insured facing multiple insurers with heterogeneous risk
attitudes, discount factors, and endowments, and without asymmetric information. We
showed that optimal indemnities can be characterized by insurer-specific deductibles and
a hierarchical structure: The insured optimally assigns ranks to insurers depending on
their MMRIS, and based on these ranks, the insured determines the optimal deductible
level for each insurer. The insured then either fully insures all risks below an endogenous
threshold with several (> 1) insurers having the highest ranks, or chooses a strictly pos-
itive minimal deductible. Afterwards, the insured gradually insures subsequent tranches
with insurers of lower ranks, so that every subsequent tranche is co-insured by multiple
insurers in a Pareto-efficient way.

Our model could also be viewed as surplus extraction through price discrimination
when the insured has complete information. It would be interesting to extend our model
to the case in which the insured has incomplete information about insurer types, as in
the model of Cremer and McLean (1985). It would also be interesting to extend our

model to a dynamic, multi-period setting and allow for asymmetric information.
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Appendix

A Kuhn-Tucker First-Order Conditions for Multiple Insurers

By strict concavity, an allocation is optimal if and only if it satisfies the first-order

Kuhn-Tucker conditions. They are:

pn10U" (w1 — X + F(X)) — pidiu;(wy; — F;) =0 (17)
if the constraints F; > 0 and | i F; < X are not binding, and

,uNH(SU’(wl - X+ F(X)) — pidu(wy; — F;) <0 (18)

if the constraint F; > 0 is binding but the constraint » ; F; < X is not binding.
Finally, if the constraint » ; Fj < X is binding, there will be a Lagrange multiplier

v(X) for this constraint, and the first-order condition will be
pn10U" (w1 - X+ F(X)) — widul(wy; — Fy) = v(X) >0 (19)
if the constraint F; > 0 is not binding, and
pn+10U" (wy = X + F(X)) = pidiug(wy — F;) < v(X) (20)

if the constraint F; > 0 is binding.

Using (a;) defined in (6), we can rewrite the conditions as the following.
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when none of the constraints is binding, and

when the constraint F; > 0 is binding but the constraint i F; < X is not.

(22)

When the constraint ; F(X) < X is binding, we have >, F;(X) = X. If we set:

MX) = =5 u(X) + U(w),

then, (19) and (20) take the form

when F; > 0 is not binding and

a; uy(wy; — F(X)) > AMX)

when it is binding.

(23)

(24)

For ease of illustration, we from now on reorder the insurers in the increasing order

of their rank. In other words, insurer ¢ means from now on the insurer whose rank is

equal to i.

By the uniqueness of optimal allocation, it suffices to show that the allocation, de-

scribed in Theorem 1, indeed satisfies the first-order conditions (21) through (24). This

is done in subsequent lemmas.

Lemma 3 Let k > J + 1. Then, for all X € [Zy41, Zy| (= Tranchey), the constraint

> Fj(X) < X is binding and the constraint Fy(x) > 0 is binding for all j < k. The
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optimal allocation for X € Tranchey is uniquely determined via

wy — (M(X)a;h), >k

J

0, ] <k

Here, \i(X) is the unique solution to

X = Z (wlj — qj(M\(X) aj_l)).

ik
The slope of F;(X), j > k satisfies

d __ R(ey)
£ Dok Rilen)

Proof. By construction, the conjectured optimal allocation satisfies

Y OF(X) =X

(26)

for all X < Z;,4. Thus, we need to verify that (23) and (24) hold in this case. Here,

the connection between & (X) from Theorem | and A, (X) is given by:

A(X) 6

&(X) = (14 a)U(c)

By (25) and (26), F;(X) satisfies

auj(wy; — Fi(X)) = M(X)  and ) F(X) = X,
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and it remains to check that equation (26) has a solution A;(X) such that
Ae(X) < U'(un) (27)
(constraint ), F; < X is binding) and

Fj = wy — ¢;(M(X)a;') > Oforallj > k (28)

J

(constraint F; > 0 is not binding for j > k) and (24) holds, that is,
aj uj(wij) = Ap(X) (29)

for all j < k (constraint F; > 0 is binding for j < k). First, let £ > J + 1. Recall now

that

N
Zi = Y (qila7 " apuf(wiy)) —wy)

i=k+1

Mz

Clk; Uk wlk)) - wu)7

@
I
B

and therefore X € [Zj11, Z;] if and only if
N N
Z (w1 — qi(a; tapup(wiy))) < X < Z (wii — qi(a; " ap—1uj_y (wip-1)))-
i=k i=k

Recalling that

- Z (w1 = @ (o7 M(X)) ), (30)

we get that

M(X) € [apup(wir), ap—1up_q (wir—1)]- (31)
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If Kk = J+ 1, the same argument implies that

Ari(X) € fagprulyy(wiga), U'(w)]. (32)

Recall that the insurers are ordered in such a way that the sequence

y, = fwn)
i (co; ) U'(co)

is monotone decreasing in ¢, and the inequality
Y, <Y
only holds true if + > J 4 1. Consequently,

an Uy(wiy) < -0 < agpr (W) < U(wr) < ayuj(wyy) < - < aguf(w).
(33)
Inequalities (31), (32), and (33) immediately yield (27) and (29). Finally, for j > k,

ajui(wy) < apup(wie) < a;t > w(wy) (ar up(wig)) ™"
and, using that Ag(X) > ag u)(wix), we get

Fy = wy — ;(M(X)a;h) > wyy — glar ug(wix) uf(wyy) (g up(wik)) ™) = 0,

and (28) follows.

It remains to prove the identity for the derivative. Differentiating (25), we get

Fi(X) = —(uj(cr;) " a;  A(X),
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and, differentiating (26), we get

1

N(X) = —————.
g ziZk qgail

Differentiating u}(¢/(2)) = z at z = a; "\ (X), we get

(uf (1) ™" = gila; " Me(X)).

Thus,
oo Wiey)) eyt (W) eyt
F](X) a Zizk 4 a;I a Zz’zk (uf (c14)) ™ a;l
-1 -1 7 -1,/ (34)
_ (Wf(ey)) " Ae(X) g _ (uf(ery) wjleny)
Zizk (uf (1))~ AR(X) a;I Zizk (uf (cri)) "t uj(cn)

which is what had to be proved. m
It remains to cover the case when the constraint ) . F;(X) < X is not binding. This

is done in the following lemma.

Lemma 4 Let k < J. Then, for all X € [Zy41,%Z;] (= Tranchey), the constraint
> Fi(X) < X is not binding, and the constraint Fj(x) > 0 is binding for all j < k.

The optimal allocation for X € Tranchey is uniquely determined via

LX) = wij — qj(U'(w = X+ F(X))a;"), j >k (35)

0, J<k.

Here, F(X) is the unique solution to:

F(X) = > (wy—qU(w— X+ F(X))a;")) = 0. (36)

j>k+1
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The slope of F;(X), j > k+ 1 satisfies

d _ R;(cyy)
B0 = R(c) + Yoy Rilen)

% J

Proof. We need to show that the allocation (35) and (36) satisfy the Kuhn-Tucker

conditions:

aiu;(wu — Fl) = U’(w1 —X—|—F(X)),

with F; > 0 for all ¢ > k£ and
a; uy(wy) —U'(wy — X +F(X)) >0

for all 7 < k.

For simplicity let k& < J. By assumption, X € [Zk+1, Zk] that is,

wy — Qag uy(wiy)) + Z (wu — g (@;1 g U;g(wlk)))

1:2>k+1

> X > wi — Qaps1 Upyy (Wiks1)) + Z Wy — 2' kg %H(wlk)))-

i:>k+1

We show that the unique solution F to (36) satisfies

X — (w1 = Qarup(wir)) < F < X — (w1 — Q(ars1 Upyy (Wi11)))-

29
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Indeed,

X — (w1 — Qa1 U1 (Wiks1)))

B Z (wij = ¢ (U (w1 = X + (X —wi + Qags1 tpyy (wiki1)))) a; "))

J=k+1

— X = Zyp1 > 0, (39)

and, similarly,

X = (w1 — Q(ax uy (w1 1))

= > (wy = (U (= X+ (X —wr + Qaguj(wir))) a; "))

J2k+1

= X -2, < 0. (40)

Consequently, by continuity and monotonicity, the right-hand side of (36) crosses zero

at a single point F', satisfying (38). Hence, for j > k + 1, by (33), we get:

Fi(X) = wij — q;(U'(w = X + F(X))a;")

> wiy — Glarp Wy (Wiksa) ;) > wiy — gia;uf(wy)a;t) = 0. (41)

It remains to be shown that the constraint F;(X) > 0 is binding for j < k. By (38) and
(33),
ajuj(wyy) — U'lwr = X + F(X)) > ajuj(wy) — apup(w) > 0,
and the claim follows.
u

To complete the proof of Theorem 1, we only need to show that there is no trade

if and only if (10) is violated. That is, the allocation F; = 0,7 = 1,--- , N satisfies the
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first-order Kuhn-Tucker conditions if and only if (10) does not hold. Since in this case

Y; and Y coincide with the pre-trade MRIS, we need to show that

ui(woi) (14 U’ (wo)

forall i = 1,---, N and all X € [0, X]. Since U’(c) is monotone decreasing in ¢, this
holds if and only if
A ) ! _ X
min ; wi(wy;) S U (wy X)7
i w(wor) T (14 @)U’ (wo)

and the claim follows.

B Contraction Mapping

Foreachi = 1,---, N, let: Q7" = x4 [, ],

7

To prove the contraction lemma, we need a few more technical results.

Lemma 5 For any X inside a tranche, F; is a piecewise C'-function of b. For all j # 1,

F; satisfies

OF, OF, OF, OF,
> 0 <0, b=t > -S p T
ob; — O ob; — 0 ab T ; 7 9b;

Proof. Suppose first that we are in the regime F'(X) < X. Then, by (35),
Fi(X) = wy = qi(b; U'(wy — X + F(X)))

and

solves
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Here, the summation is only over those insurers j that participate in the tranche. Thus,

oF _ gUe)Ue)
b, L+ 37 @bk U'(c1)) b U (1)
and, hence, for j # i,
OF; ¢;(b; U'(c1)) U'(cn)
= q.(b; U’ b; U" ! <0
g, — WO ) T G e e )

if insurer j participates in the tranche, and the derivative is zero otherwise. Consequently,

> ki G(bx U'(c1)) by, U (1)

2 b, = VDI ) £ S e
and
- v - AR
S L
Therefore,

_Zfab

Suppose now that the constraint £'(X) < X is binding, so that F/(X) = X. Then, by

Fi(X) = wi — g:(MX) by),
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where the summation is only over insurers ¢ participating in the tranche. Differentiating,

we get
IAX) _ —dh(b MK AX)
b, >k @ (e ACX)) bi
and, hence,
OF, , ¢;(bj A(X)) A(X)

if the insurer j # i participates in the tranche and the derivative is zero otherwise.

Similarly,
oF, : q;(bi A(X)) A(X)
5 = —qi(A(X) b)) AM(X) + bi i(MX) by) S i (be MX)) b
X b Ax) 2 B b )

2 @b A(X)) b

if F;(X) # 0 (that is, if insurer ¢ participates in the tranche), and is zero otherwise. A

direct calculation implies that

Lemma 6 H;(C,b) is monotone increasing in C € [Ciin, Cax] and b_; € e and

takes values in [P | eP7™].2% Furthermore, there exists ann < 1 such that
0H;

Z bjc?_b < nH;

j#i J

for all b_; € Q% except for points in a finite union of hyperplanes, for which the deriva-

tives do not exist.

ZNote that H;(C,b_;)/C is decreasing in C because H; is increasing in C.
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Proof of Lemma 6. Consider the function:

iy, b_i, C) = 67" Cuj (v (Li — 8 Elui(wi; — F(X, (y,b-3)))])) -

Then, the defining equation for H; can be rewritten as

H’i = wZ(Hla b—i7 C)

To complete the proof of the first part of the lemma, it remains to be shown that (1) v; is
monotone decreasing in y; (2) for each fixed C' € [Ciyin , Chax] and each fixed b_;, it maps
the whole R into the compact interval [e%™" | ¢#"]; and (3) it is monotone increasing in
b_;, C and is piecewise C! with respect to all variables.

By definition, the form of the function F; depends on the relative ranking of insurers,
which, in turn, is determined by the ordering of the numbers b;/u;(wy;) (see (33)). For
each permutation 7 of {1,---, N}, define the corresponding “sector”: the subset of R’
such that, for all b in this sector, the sequence by ;) /u. 0 (w1r(;)) is monotone increasing
in 4. The borders of these sectors belong to hyperplanes for which byu}(w1;) = bju’;(wy;)
for some i # j.

Clearly, since the function v; is continuous, it suffices to prove the required result for
each fixed sector.”*

As above, by abuse of notation, we reorder the insurers for each fixed sector so that
(33) holds, and thus insurer ¢ will mean the insurer whose rank is equal to 7.

First, the fact that the image of the function v; is inside the interval [e#™" | ™™

24Here, one should in general take additional care of the situation when H; hits the boundaries of
the sectors for an open set of parameters. Clearly, this cannot happen for generic values of parameters
(discount factors and endowments), and we therefore ignore it. The proof can be easily modified to

cover this non-generic situation.
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follows directly from the definition and the inequality:

Note that the function F;(z) is continuous and is a smooth function of all b; as long

as b varies inside a fixed sector. Therefore,

0
8_bkE[uz(wM Fi(b, X))]

- abkz [ o Fp2)pla)s
> [ it o) (G 00)) i
- 5 [uxwu - ) (00|

The derivatives of Z;(b;) do not appear on the right-hand side of (43) because the
boundary terms cancel.

Denote

Go = v (Li — 6:E[u;(wy; + Fy(X, (Hi(C,b_:),b_)))]).

Taking partial derivative with respect to b; on
Hi(C,by) = 6, Cug (v (Li — 8 Elug(wi; — Fy(X, (y,b-4)))])) -

yields

OH, -
817]‘ - ‘ ¢ U;(éoz)

OF,  OF, 0H,
~Ob;  Ob; b )}
OF, OF,0H,

~Ob;  Ob; O )}

35



where we have used the identity v}(z) = (u}(v(z)))~! and A;(z) = —u!(z)/ul(z). Hence,

(2

OH; _ C Ai(Co) E [Ui‘(wu — F(X)) <—8%Fi(X))]
Wi 1+ CAG0) B [u(wi - F(X)) (£ F(X))]

Lemma 5 implies that

C i) E |ui(wys = FA(X)) X, by (— o F(X)) |

oH, ;
; oy, T + O Ai(é) E {ugmu ~ (X)) (6‘1]7,-(X)>} "
C Ai(o) B [u(wni = Fi(X)bi (ZF(X)

IN

|
Lt CAG) B i~ B0) (3£

where we have defined

R C Ai(¢o) E [ug(wu — F;(X)) <£¢E(X)ﬂ
e oA B (s — £X) (£ R00)]

It follows from the proof of Lemma 5 that the derivative %E(X ) stays uniformly
bounded when b varies on the compact subset e and therefore n < 1. The proof

is complete. m

Lemma 7 Consider a map G = (G;) : Q — Q with coordinate maps G;(by,--- ,bn),

such that the following is true:
e The map G s continuous;

o There exists a finite set S of smooth hyper-surfaces such that G is C' on Q\ S;

and
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o There exists a constant n < 1 such that

Z oG, <
~ oq,| ="
J
for alli and alld = (d;) € Q\ S.
Then, the map G is a contraction in the l norm ||d||,., = max;|d;|, so that

|G(d") = G(d®)[li, < nfd"—d?[|...
In particular, G has a unique fized point d, that satisfies
d* = lim G"(d°)

n—o0

for any d° € Q.

Proof of Lemma 7. With continuity, we may assume that the two points d! and

d? are in a generic position, so that the segment,
dit) = d' +t(d*—d"), t€|0,1]
connecting d' and d?, intersects the hyperplanes from S for a finite set
t <ty < - < tpit.

Then,

Gi(d") — Gi(d®)] =

> /k“ > gji (d(t)) (& — d}) dt
k=1 Ytk j J

< mjaX\di—d}ln = nlld" —d?||,..

(45)
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The last claim follows from the contraction mapping theorem (see Lucas and Stokey
(1989), Theorem 3.2 on p. 50). =

Proof of Lemma 1. Let b; = e¢% . By Lemma 0,

I(Geo); _, 0H;
j J j#i J

and the claim follows from Lemma 7. m

Proof of Theorem 2. By the definition of H; and d*, we have
g (™ 5,07 —wo; = ¢;(H;(C,e™4)5,C ™) — wo; = B (Fi(X, (Hi(C,b%,),b",))). (46)
Using the definition of Cyp, and Crugg, and the fact that
0 < P(F(X, (Hi(C,b",),0,))) < Pmee,

it follows from continuity that there exists a solution to equation 15 which we copy below

for convenience:

-1
C = ((1 + Oé)d_lU, (’LUO — (1 + (Y) Z <Qz (6d;(c)5i0_1) — w0Z>)> .
The uniqueness of C* follows from monotonicity of H;(C,b_;)/C.
To show {F;(b*(C*))}=V is optimal, we only need to show b* satisfies equation 13,

that is,
07 uj (woi + Py(Fy(bY)))

b = .
(14 a) 510" (wo = (1+a) 3, B(Fy(b9)) )

Because C* solves equation 15, by equation 46, the above condition is equivalent to

b = 5;10*% (wo; + Pi(F3(b"))),

7
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which is true by the definition of the function H;(C,b_;). m

Proof of Lemma 2. Pick a parameter ( and suppose that

GC<d7 C1> > Gc(d, C2>

for all d and, for any fixed d = (d;), the expression

((1 +a)§ U (wo — (1+a) Z (g:(e® 6, C) —wol-)>>

1

is larger for ¢; than for (5. Pick a point dy € 2. Then, since G¢ is monotone increasing

in d, we get:

Ge(do, 1) = Ge(Ge(do, G),¢G) > Ge(Geldo, ), G)

> Ge(Ge(do, (), ) = GE(do, G). (47)
Repeating the same argument, we get:
G&(do, 1) > GE(do, C2)
for any n € N. Sending n — oo and using Lemma 1 and Lemma 7, we get:
d*(C.¢) = d*(C,¢)
for any C. This immediately yields that C*(¢;) > C*((s), and therefore
d*(C*(G), G) = d(C7(G), &) = d(C™(¢), G2)

and the claim follows. m
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Lemma 8 Suppose that an increase in a parameter ¢ leads to an increase in the optimal

d*. Then, this also leads to more insurance.

Proof of Lemma 8. An increasein d;,i = 1, ---, N is equivalent to a decrease
in all coordinates of a = (a;) = (e %). Consequently, the number of the coordinates
of a for which a; u}(wy;) < U’(w;) increases. This is precisely #{senior}. Similarly, by
definition, Zsn coverage = ZJ+1 1S monotone decreasing in all a; (see (8)), and Zgeductible 1
monotone increasing in all coordinates of a. Finally, the participation index is equal to
1if a; w}(wy;) < U'(wq) and therefore stays equal to 1 if a; decreases. m

Proof of Corollary 2. By the definition of FOSD dominance, an increase in the

distribution of X in the FOSD sense leads to a decrease of
Elui(wy; — Fi(b, X))],

foralli =1, ---, N and, consequently, to a decrease in the right-hand side of (14) for
any fixed a. Therefore, the solution H; to (14) also decreases in response to this change
in the distribution of X. By Lemma 2, this leads to decrease of all coordinates of vector
b. The claims follow now from Lemma &.

Similarly, an increase in wy and an increase in ¢ lead to an increase in the right-hand
side of (15). This leads to an increase in C, and therefore, by Lemma 2, all coordinates
of vector b increase. m

Proof of Corollary 3. A direct calculation shows that, under the CARA assump-
tion, the vector b = (b;) solves

b = 61 C (efAiwoZ‘ + e*&*Aiqu[l _ eAiFi(X)]) 1 =1,--- N. (48)

)

Suppose that
§; e~ Aiwn §; e A

(49)
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for some insurers ¢ and j, but rank(i) < rank(j). By definition, this means that
b e < by e, (50)
We now claim that the inequality rank(i) < rank(j) implies
A F, < AjF;. (51)

Indeed, for all tranches in which insurer ¢ participates, the slopes of A; F; and A; Fj
coincide by Corollary 1. Since j has a higher rank, A; F;(X) = 0 for all X for which

A; F;(X) = 0. The claim (51) follows now by continuity of F; and F;. Consequently,

E[l - eAiFi(X)] > E[1-— eAjFJ'(X)]

and therefore (48) and (49) together yield

b; eAiwi — (51—1 C A (wii—woi) +C E[l — et Fi(X)]
(52)
Z 5;1 CeA]' (wljfng) + CE[l _ eA]' FJ(X)] — b] eAj w1j7

which contradicts (50). The proof is complete. =
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