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Abstract

We study optimal securitization in the presence of an initial moral hazard. A
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whose default risk is determined by the unobservable costly effort exerted by the
intermediary. We calculate the optimal contract for any given effort level and show
the natural emergence of extreme punishment for defaults, under which investors
stop paying the intermediary after the first default. With securitization contracts
optimally designed, we find securitization improves the intermediary’s screening
incentives. Furthermore, the equilibrium effort level and the surplus converge to
their first best levels with sufficiently many assets.
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1. Introduction

The disastrous meltdown of the structured securitization market during the 2007-2008
financial crisis has been largely attributed to insufficient regulation and misalignment of
incentives between market participants. Many policy-makers have argued that, under
the “originate-and-distribute” business model, intermediaries did not bear the credit risk
of borrower default, which led to deterioration in the credit quality of the underlying
assets. Several policy proposals have been made to ensure that securitizers have strong
incentives to monitor the quality of the assets they package. Some of these proposals were
ultimately included in the Dodd-Frank Wall Street Reform and Consumer Protection
Act, including a requirement that securitizers retain at least five percent of the default
risk of assets in an asset-backed security (ABS).

Although this five percent retention rule is supposed to ensure that the intermediaries
have “skin in the game,” whether this rule is efficient is not at all clear.! Furthermore, the
degree of its inefficiency might depend in a very non-trivial way on the precise nature of
the default risk of the securitized assets. The theoretical foundations of the five percent
rule have their origins in the literature on static optimal security design, where it has
been shown that simple retention rules efficiently resolve the problem of informational
asymmetry (see, e.g., DeMarzo and Duffie, 1999; Diamond and Rajan, 2000). However,
this simple rule may fail to take into account of the intrinsic dynamic long-term nature
of ABS default risk. The fact that contractual payments can be conditioned only on
infrequent, discrete default events might completely alter the structure of the optimal
incentive provision. These effects have been essentially ignored in the literature on

optimal security design until a recent paper by Hartman-Glaser, Piskorski, and Tchistyi

!This potential inefficiency has been a topic of extensive discussions by policy makers. Several
improvements have been suggested, such as permitting securitizers to select a form of risk retention
from a menu of options. See, e.g., Luis A. Aguilar, “Speech by SEC Commissioner: Realigning In-
centives in the Securitization Market,” U.S. Securities and Exchange Commission, March 30, 2011,
http://www.sec.gov/news/speech/2011/spch033011laa-item-1.htm



(2011) (henceforth, HPT (2011)). They were the first to introduce a general framework
for studying optimal securitization of defaultable assets and formalize the major economic
mechanisms that are important for incentive provision. In this paper, we build on the
insights of HPT (2011) and study the following general questions: (1) How can we design
efficient incentive alignment mechanisms taking into account of the dynamic nature of
ABS default risk? (2) How does this optimal design depend on the market conditions
and the nature of the assets underlying the ABS? (3) To what extent are natural market
mechanisms able to induce efficient incentive alignment, and how can regulation improve
these mechanisms? These are the questions we address in this paper.

As in HPT (2011), we consider the problem of dynamic optimal contracting between
an intermediary (the securitizer) and outside investors in the presence of an initial moral
hazard. Given a form of the contractual agreement, the intermediary optimally chooses
the level of costly effort that he exerts initially to screen the assets that will be securi-
tized.”

We use the standard Black and Cox (1976) structural model to model default risk
of any single asset in the securitized basket. In this model, the borrower’s distance to
default is characterized by a stochastic process that fluctuates over time, and the default
occurs when this process falls below a given threshold. This process can be interpreted
as operational cash flows or firm value (when the borrower is a firm), income (when the
borrower is an individual), or house price (in the case of a mortgage). The default risk
of a borrower is then characterized by three directly interpretable economic parameters:
initial distance to default (determined by how much the stochastic process has to fall
for the default to occur), growth rate, and volatility. These three degrees of freedom

allow us to investigate the effects of these three sources of default risk on the structure

2The cost of exerting the effort may be interpreted in two ways: First, it is the direct cost of
carefully monitoring the potential borrowers; second, it is the indirect cost of missing the opportunity to
securitize low-quality (high-risk) assets. This indirect cost may be significantly higher than the simple
direct screening cost.



of the optimal contract between the intermediary and investors. We characterize the
optimal contract in closed form and show that, under certain circumstances, it can
exhibit surprising patterns such as large payments to the intermediary after a fixed
number of defaults occur one immediately after another (paying for default cascades).”
However, when the desired effort level implements the lowest default hazard rate and the
risk aversion of the market participants is sufficiently small, we show that the optimal
contract exhibits extreme punishment for defaults: It makes positive transfers to the
intermediary only until the time of the first default. In particular, this result shows
that the optimal contract of HPT (2011) is robust and holds even in the presence of
risk aversion, provided the latter is sufficiently small. Furthermore, we also show that
a lumpy contract is optimal in the risk neutral limit, in agreement with the findings of
HPT (2011).

To assess the effect of bargaining power on the optimal contract design, we compare
two polar cases: the competitive case, in which the intermediary has all the bargaining
power in designing the contract, and the monopolistic case, in which the investor has
all the bargaining power in designing the contract. Naturally, we might expect that the
ability to sell all the credit risk “off the balance sheet” reduces the securitizer’s screening
incentives. On the other hand, when investors have all the bargaining power, we might
expect that it would be easier for them to provide correct incentives for the intermediary.
This leads us to formulate the following two conjectures:

Conjecture 1. Securitization leads to lax screening if the securitizer has all the
bargaining power.

Conjecture 2. The optimal screening effort when the securitizer has all the bar-
gaining power is lower than the optimal screening effort when the investor has all the

bargaining power.

3As we discuss in the main text, this contract structure has the undesirable feature of being quite
vulnerable to manipulation by the intermediary.



Surprisingly, our analytical results indicate that the following statements are true:

e Conjecture 1 never holds when risk aversions of both agents are sufficiently small.
In this case, securitization always improves the intermediary’s screening incentives,

independent of who has the bargaining power.

o (Congecture 2 generally does not hold. In fact, we show that, when risk aversions
are small, the equilibrium effort level of the intermediary does not depend on the
bargaining power allocation. Reducing the severity of the moral hazard problem
through pooling is always in the best interest of the intermediary; pooling allows
the intermediary to achieve surplus extraction, which is arbitrarily close to the first
best. Furthermore, for some parameter values, the equilibrium effort level will be
higher when the intermediary designs the contract than when the investor designs

the contract.

The economic intuition behind these surprising findings comes from the fact that,
in our model: (i) The effort is priced (because investors have rational expectations and
correctly anticipate the intermediary’s optimal effort level for any given contract); and
(ii) the cost of additional effort (relative to the no securitization case) is always less than
the discount imposed due to the fact that the effort is priced. Part (i) is clear: Indeed,
even if the intermediary designs a contract that leaves it with a minimal exposure to the
underlying default risk, investors know that, with such contract form, the intermediary
will optimally choose a low effort. Therefore, investors will demand a high premium
for the increased default risk. Part (ii) is not at all obvious and is driven by the risk
neutrality of the market participants and the relative impatience of the intermediary.
Indeed, if all market participants are risk neutral and the investor discounts future cash

flows at a higher rate than the intermediary, the incremental benefit of effort is always



greater for the investor than for the intermediary.”

This premium effectively reduces the intermediary’s cost of effort and might make
exerting a higher effort optimal. When investors have all the bargaining power, providing
incentives for the intermediary to reduce the overall default risk certainly is in their
interest. However, the effective cost that investors have to pay for this incentive provision
might be higher in some circumstances than the effective effort cost reduction when the
securitizer has all the bargaining power. In this case, the equilibrium effort level in the
competitive case is higher than that in the case of a monopolistic investor.

When agents are risk neutral, we show that, surprisingly, the optimal contracts in
the two polar cases differ only in the payment they make at time zero. In particular, the
equilibrium effort level is independent of the bargaining power allocation and converges to
the first best level when the number of securitized assets is sufficiently large. Increasing
the minimal number of assets in the securitized pool always improves incentives and
facilitates surplus extraction.

Our results have potential implications for securitization practices and regulation. In
contrast to the conventional wisdom, we argue that securitization may improve incentives
and therefore increase overall welfare of the society. This can happen even in situations
when intermediaries are completely unregulated and have full bargaining power. We be-
lieve that properly designed securitization contracts may significantly reduce the “lemons
spread”” and therefore improve the efficiency of these ABS markets. Finally, we note

that, in our model, we make an implicit assumption that no information about asset

4The presence of risk aversion may potentially change the effect of securitization. For example,
consider a model in which the intermediary is risk averse and the investor is risk neutral, and effort only
reduces riskiness of cash flows, but does not change their present value. Since effort is costly and the
investor is risk neutral, any efficient contract will implement the lowest effort. However, in the absence
of securitization, it will always be optimal for the intermediary to exert effort if the cost of effort is not
too high. We thank an anonymous referee for suggesting with this very illustrative example.

5See, e.g. Downing, Jaffee and Wallace (2009) who find that this spread accounts for up to 45% of
the overall prepayment spread of mortgage-backed securities.



quality is verifiable. Under this assumption, credit rating agencies are essentially redun-
dant and the degree of the credit risk of an ABS is determined solely by the structure of
the corresponding contract and can therefore be directly inferred by rational investors.
By contrast, if a credit rating agency could provide credible information about the asset
quality, default contingent contracts may become unnecessary. The relative efficiency
of the two different mechanisms depends on how costly it is for the rating agencies to
verify the information, relative to how costly it is to provide incentives through default
contingent contracts. Nevertheless, introducing optimal contracts into standard securi-
tization practices would reduce the role of ratings in securitization, which is particularly
important given the obvious failure of rating agencies to provide credible information
during (and before) the crisis (Bolton, Freixas, and Shapiro, 2011).

We discuss the related literature in the following paragraphs.

Several empirical papers study the effect of misaligned incentives on the ABS market
during the 2007-2008 crisis. Mian and Sufi (2009) find evidence that the extraordinary
subprime mortgage growth from 2002 to 2005 was driven by a sharp rise in securitization,
and they further suggest that the moral hazard associated with securitization might have
caused the high mortgage default rates during that period and contributed to the global
financial crisis. Keys, Mukherjee, Seru, and Vig (2010) exploit a specific rule of thumb
in the mortgage lending market to examine whether the securitization process reduces
the incentives of financial intermediaries to screen borrowers carefully, and their results
suggest that existing securitization practices adversely affected the screening incentives
of subprime lenders. Using comprehensive sales data of mortgage-backed securities from
1991 through 2002, Downing, Jaffee, and Wallace (2009) also show that securitized assets
are of low quality with unfavorable performance. Thus, all three papers find empirical
support for Conjecture 1 above. The discrepancy between our theoretical predictions

and the empirical evidences can be explained by two factors: (1) Investors in the ABS



market were not sophisticated enough (i.e., did not have rational expectations) to fully
understand the intermediaries’ incentives issue; and (2) the contracts used in the industry
were far from being optimal or efficient in any sense. As we discuss above, resolving these
two issues might significantly improve the functionality of the securitization market.

Asheraft and Schuermann (2009), Fender and Mitchell (2009), and Kane (2009) pro-
vide a detailed discussion of the chain of incentive conflicts that led to the subprime
mortgage crisis. Minton, Stulz and Williamson (2009) and Stulz (2010) study how the
adverse effect of the use of credit derivatives on lender’s incentives contributed to the
financial crisis.® In particular, Stulz (2010, p.90) argues that: “Rather than blaming
derivatives markets, such as the credit default swap market, for being too large, it might
make as much sense to regret that derivatives markets were not larger.” We believe that
our theoretical results strongly support this argument. Larger, more efficient, and bet-
ter designed markets for securitizing and sharing credit risk might significantly improve
social welfare.”

Our paper is also clearly related to theoretical literature on optimal security design.
One large strand of this literature studies static optimal security design in the presence
of asymmetric information. DeMarzo and Duffie (1999) develop a model in which the
issuer has private information about the future payoff and signals a high-value security
by its willingness to retain a portion of the issue. They study the problem of ex ante
security design: The issuer designs the security before obtaining a signal about its value.
DeMarzo and Duffie show that, under certain conditions, the optimal ex ante security
design is a standard debt. DeMarzo (2005) studies whether pooling and tranching is

optimal for an informed security issuer. Biais and Mariotti (2004) extend the Duffie

6See also Partnoy and Skeel (2006) for a pre-crisis warning.

TOf course, strict regulation of the credit risk exposure of market participants participating in true
sale transactions is necessary for efficient incentive alignment. For example, according to the Dodd-Frank
Act, a securitizer is prohibited from evading the risk retention requirements by hedging or transferring
the credit risk that they are required to retain.



and DeMarzo (1999) model and study how securities and issuance mechanisms can be
designed to mitigate the adverse effect of market imperfections on liquidity. They study
separately the competitive case and the monopolistic case, just as we do in our model.

Gorton and Pennachi (1990) and Boot and Thakor (1993) show that, when both
informed and uninformed investors are present in the market, it is optimal to split the
asset into two securities: one senior and less information-sensitive security, and one
junior and more information-sensitive security. Fulghieri and Lukin (2001) and Axelson
(2007) study the security design problem that arises when outside investors have private
information about the firm. Each of these papers, however, assumes that the unknown
quality of the underlying assets is exogenous and is not affected by the effort of the seller;
therefore, risk retention in these models is a signaling device. In contrast, investors in
our model rationally anticipate the quality of the assets for any given contract. Thus,
asymmetric information is present ex-ante because of moral hazard, but it is absent
ex-post. This distinction is also true in the one-period optimal contracting problem
with moral hazard, studied by Innes (1990). Another large strand of the literature is
motivated by spanning risks. For surveys, see Allen and Gale (1994) and Duffie and Rahi
(1995).

Substantial literature addresses dynamic optimal contracting with a repeated moral
hazard, in which an agent makes a choice about effort in every period, and the cur-
rent effort choice affects only the current outcome. See DeMarzo and Sannikov (2006),
DeMarzo and Fishman (2007), and Sannikov (2008) for this stream of literature. In
contrast, the moral hazard problem in our paper is persistent: A single action of the
securitizer at time zero determines the probability distribution of all future cash flows.
Furthermore, the nature of information flow in our model is very unique because new
information arrives only at default events.

The closest to our work is the recent paper by Hartman-Glaser, Piskorski, and



Tchistyi (2011), which is the first paper to derive an optimal securitization contract
in a dynamic setting. Their analysis generates new insights regarding the dynamic na-
ture of the contracting problem and their optimal contract takes a an elegant and simple
form: It makes a single payment to the intermediary after a waiting period if default
occurs during this period. The derivation of this result in HPT (2011) is based on the
following assumptions: (1) both the intermediary and the investor are risk neutral; (2)
default times are exponentially distributed; and (3) it is optimal for the investors to
provide incentives for the intermediary to exert the highest effort level. We show that
the result of HPT (2011) is robust and holds in more general settings, up to small mod-
ifications. Namely, assuming that the risk aversions of both agents are sufficiently small
and that higher effort leads to a lower default hazard rate, we show that the optimal
contract is characterized by multiple waiting periods, where the intermediary gets par-
tially remunerated for the absence of defaults during every subsequent waiting period.
This result is very general and holds for a large class of default time distributions and
multiple effort levels. As an application, we use the benchmark Black and Cox (1976)
model to study how different sources of default risk interact and how they affect the form

of the optimal contract.

2. Model Setup

We consider a continuous time optimal contracting problem between two agents: an
intermediary S (the seller) and an outside investor B (the buyer). At time t = 0, the
intermediary creates a pool of N defaultable assets (e.g., issues loans or mortgages, or
acquires defaultable bonds) and sells this pool to the investor. The quality of the assets in
the pool depends on the intermediary’s unobservable (and hence non-contractible) costly
effort e that can take a finite number of values, e € {e1,--- ,ex} with e; < -+ < ek.

The direct utility cost of exerting effort level e; is equal to C; , j = 1,---, K. In the



case of a binary effort (K = 2), we write e € {er, eg }, where e, corresponds to low effort
and ey to high effort.

As in HPT (2011), we assume that, conditional on the effort level e;, exerted by the
intermediary at time 0, the random default times {73, - ,Tx} of the N assets in the
pool are independent and identically distributed® with the cumulative distribution and

the survival functions given by:

Fe,(t) = Prob[T; < t|ej] and Ge;(t) = Prob[T; >t|e;] = 1—-F,(t) (1)

for all i € {1,---, K}. Consistent with intuition, we say that an effort reduces default
risk if it reduces the probability of default of any given asset ¢ over any given time horizon
[0,t]. Everywhere in the sequel, we make the following assumption:

Assumption. We assume that higher effort reduces default risk—that is F, (t) is
monotone decreasing in j € {1,---, K} for any ¢ > 0. Furthermore, we assume that
F,,(t) has a strictly positive, continuous density p., (t) for any j € {1,---, K}.

For simplicity, we assume that each securitized asset ¢ = 1,--- | N is a defaultable
bond (e.g., loan, mortgage, etc.) paying a fixed coupon rate u until the the default occurs
at time T}, and a recovery coupon rate R < u after the default.” Let D, denote the total

number of defaults that have occurred up to time ¢. Then, because individual default

times are i.i.d., the information set of the investor and the intermediary coincides with

8We do not analyze correlated defaults and the effects of systemic risk on the shape of the optimal
contract. These effects may be important both for securitization of consumer loans and mortgages,
where default risk is directly related to home prices, and for securitization of defaultable bonds, where
defaults may be frailty-correlated. See Duffie, Eckner, Horel, and Saita (2009). Our methods can be
directly extended to this more general setting, and we leave it as a topic for future research.

9Tt would be more realistic to assume that the bond holder gets a lump sum payment pu/r, equal
to the value of the bond, multiplied by the recovery rate p. By picking R = pu, we get that the present
value of the bond after default is equal to pu/r, and the two assumptions thus are equivalent if the agents
can invest the recovery payment into a risk-free bond. We make the continuous payment assumption
for technical reasons because the agents are maximizing utility from continuous consumption.

10



the filtration F; generated by the process D;. Let

T, = inf{t > 0: D, >n}

be the stopping time of the n-th default, and we set 7y = 0. Then, the total payment

rate d; of the pool is given by the stochastic process:

N
d = (N=D)u + D;R = 3 b Liclrmen
n=0
where
dp = (N=n)u + nR. (2)

A securitization contract specifies a transfer schedule from the investor to the interme-
diary, contingent on the history of defaults. Namely, the schedule is given by a sequence
of payment rates {z,(t,71.n), n > 0} specifying the rate x,, > 0 (limited liability for
the intermediary) that the investor transfers to the intermediary at the instant of time ¢
after exactly n defaults have occurred, conditional on their occurrence times 7, - -« , 7,.
Both the intermediary (agent S) and the investor (agent B) are risk averse,'’ and they
maximize the discounted intertemporal expected utilities ug and up from their life-time
consumption, discounted at the rates v and r respectively. As is common in the lit-
erature on dynamic optimal contracting, we assume that the intermediary is relatively
impatient-that is, v > r.!"

For each ¢+ = S, B the utility function wu; is assumed to be strictly increasing and

concave; it is defined on an interval (¢;,4+00) for some ¢; € [—00,0) and satisfies the

0L ater on, we consider the risk neutral limit case when the risk aversions of both agents converge to
Zero.

HSee, e.g., DeMarzo and Duffie (1999), DeMarzo and Sannikov (2006), and HPT (2011). This as-
sumption is typically justified as a preference for cash or for additional investment opportunities by the
agent (intermediary), as in DeMarzo and Duffie (1999).

11



standard Inada conditions

lim u)(c) = 400, lim wu(c)=0.
cll; c—+00

The utility of the intermediary from entering the contract {x,} after exerting an effort

. . 12
e; is given by

Us({zn},ej) = E {/000 6_7tus($Dt(t’T[1,Dt])>dt|6;} - G (3)

and the corresponding utility of the investor is given by:

Us({7n},e5) = E [/0"0 e "tup(dy — th(t7T[1,Dt]))dt|ej:| : (4)

We can now formulate the optimal contracting problem and describe efficient allocations,
corresponding to the two polar cases: the competitive case, in which the intermediary
has all the bargaining power in designing the contract, and the monopolistic case, in

which the investor has all the bargaining power in designing the contract.

Following the lines of HPT (2011)", we make the following definition.

Definition 2..1 An efficient allocation is a quadruple (U%, Ug, {zn}, €j) consisting of
e a contract {z,} with x, >0 for all n > 0;
o an effort level e;;

o the utility U% = Ug({x,, ,e;) for the seller after entering the contract;
s j

12The assumption that the agent (intermediary) derives utility from the continuous flow of consump-
tion, offered by the principal (investor) is standard in the optimal contracting literature. See, e.g.,
Sannikov (2008).

13See, HPT (2011), Definition 1. We thank an anonymous referee for suggesting this form of definition.

12



o the utility UY = Us({0, — xn}, €;) of the buyer after entering the contract,

where the pair ({x,}, e;) fulfills the optimality condition

U% = max Ug({6, —yn}. €r) (I)

{(ynvek

where the mazimization is over all contract-effort pairs ({yn}, ex) satisfying the limited li-

ability (LL), incentive compatibility (IC) and the intermediary’s participation constraints

(PC):
Yn > 0 for all n >0, (LL)
e; = argmax Us({yn},ex), (IC)
Us({yn},ex) > U9. (PC)

This definition describes the entire Pareto frontier of contracting outcomes. Denote by £
the set of efficient allocations. In this paper we will study two particular efficient alloca-
tions, corresponding to extreme bargaining power allocations. Namely, the monopolistic

investor case and the competitive investor case.

e The equilibrium in the monopolistic case corresponds to the efficient allocation for

which!'*

U4 = max{U: (U,US {z,},¢;) € & for some {z,},e; and US > U}

e the equilibrium in the competitive case corresponds to the efficient allocation with

“Tnterestingly enough, as HPT (2011) show, (PC) does not bind in the monopolistic case if the outside
option UY is sufficiently small.

13



UY = UY that maximizes UJ. That is,'”

US = max{U: (U3, U, {z,},e;) € & for some {z,},e;}.

As is common in the literature, we will solve the optimal contracting problem in two
steps: First, find the the optimal contract, implementing any given effort level; second,

find the optimal (equilibrium) effort level.

3. The Optimal Contract for a Given Effort Level

In this section, we fix an effort level e;, characterize the optimal contract implementing
this effort level, and study its properties.

By definition, the stopping times 71 < --- < Ty coincide with the order statistics of
the individual default times 71, -- ,Ty. In particular, 77 = min{7y,k =1,--- , N} and

v = max{T},k = 1,--- , N}. We will denote by f,’(714) the joint density of

e = (m, "), k<N

conditional on the effort level e;."0

Fix an effort level e;. Denote by Prob® |7 > t|7;] the probability that the (k + 1)-
th default occurs not earlier than at time t > 7,.'" Since the intermediary receives
xi(t, 71,) only if (K + 1)-th default occurs not earlier than at time ¢ > 73, for the time

period between the k-th and the (k + 1)-th default events, the gain for the intermediary

15Tt may happen that there are multiple efficient allocations corresponding to = Us.
6Lemma A.1 in the Appendix provides an explicit expression for this density.

17 s : €, (Ge'(t))Nik
It is possible to show that Prob® [ry1 > t|1x] = W .

14



from exerting effort level e; relative to another effort level e; is given by

Tk+1 Tk+1
E [/ us (@ (t, Tup)) di | ej} - F [/ us (@ (t, Tum)) dt | e

Tk Tk

= /k/ fkej (T[l,k}) Prob® [Tk-i-l > t|7’k] et Us(ffk(taT[Lk])) (5)
R~ J 1
X Preic; (B T14)) dtdrp g ,
—_———

1 net the relative likelihood of receiving z (¢,7[1,x))

where we have set'®

Prob® >t il L.
Prcie,(t;g) = 1 — = e.[Tk“ 7] ';j(ﬁ’ s Tk)
Prob J[Tk+1 > tlTk] fk ( 7Tk>

 pe(1) - pe () (G, ()N
De; (1) -+ Pey () (G, ()N F

Tl’--.

(6)

The quantity Py, ., will play a fundamental role in the structure of the optimal contract.
From the intermediary’s point of view, Py, .. determines the likelihood of receiving the
cash flows @ (t, 71,,) at time ¢ under the effort e;, relative to that under the effort e;.
From the investor’s point of view, Py, ., is equal to 1 minus the likelihood of the event
that the intermediary exerted effort e; relative to the effort level e;, given that the first &
defaults occur at times 71, -, 7, and the next default occurs no earlier than at time ¢.
Formula (5) implies that the effect of the (IC) constraints on the structure of the optimal
contract is completely determined by the nature of the functions Py, .

Since both (IC) and (PC) will enter the first order conditions with the corresponding

Lagrange multipliers {uic, upc}, we will also need the following definition:

Uy (t, 715 { s poc}) = pec + ZMIC,iPk,ei,ej(taT[l,k])- (7)
i#j

Finally, we will call a contract strictly incentive and participation constraint compatible

18See Appendix for a derivation of this expression.
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if both (IC) and (PC) hold with strict inequalities. We can now describe the optimal

contract implementing a given effort level j.

Theorem 3..1 Fiz an effort level e;, j > 1 and suppose that the set of strictly incentive
and participation constraint compatible contracts, implementing the effort level e; is non-
empty. Then, there exist Lagrange multipliers pipc > 0, pic,; > 0, © # j, such that the

optimal contract {x(t, ) , k=0,---, N} satisfies

e "y (0 — xp)
e,,ytu‘/s(mk) = \Ijk(tv T[l,k]a {,LLICa ,UJPC}) (8)
if
efrtu/ 5
Wy (t, Tk { e, ppc }) > M (9)

e "ug(0)
and x, = 0 otherwise.

Furthermore, the contract has a finite maturity: There exists a T > 0 such that

xi(t, ) =0 for all t > T and all k > 0.

The nature of the optimal contract is determined by the interaction of three forces:
(i) (IC) constraints, driven by the dynamics of Py, .;; (ii) benefits of paying the interme-
diary early, driven by the impatience wedge (v > r); and (iii) risk sharing.'? Intuitively,
the contract incentivizes the intermediary by decreasing payments proportionally to the
likelihood 1 — Pjc, e, (t, 1)) of a deviation from the desired level of effort e; to an al-
ternative effort e;. The strength of these incentives is characterized by the size of the
corresponding Lagrange multiplier pjc;. At the optimum, the ratio of the discounted

rt, !

marginal loss for the investor, e "’z (6x — x), and the discounted marginal benefit for

the intermediary, e u/s(z), in any given state is proportional to a linear combination

19Note that, without moral hazard and the impatience wedge (i.e., prc; = 0 and vy = r), perfect
risk-sharing is achieved.
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of these likelihoods, given by Wy, provided that the signal of no deviation to any alterna-
tives of the seller implied by this state is sufficiently strong. If the signal of no deviation
is not strong enough, (i.e., when (9) is violated), (LL) constraint binds and the optimal

payments are reduced to zero.

To gain a deeper understanding of the optimal dynamic incentive provision mecha-
nism, we need to investigate properties of the functions Pk,e,-,e]-(t, T[lyk}). Recall that the

quantity
_ pe ()
hej (t) - Gej (t) .

(10)
is commonly referred to as the default hazard rate. We need the following definition:

Definition 3..2 We say that an effort level e; leads to a lower default hazard rate than
the effort level e; if he,(t) < he,(t) for allt > 0.* In this case we say that p.;, dominates
De; in the hazard rate order, and we write pe, <pr pe, - Furthermore, we write pe, <n; Pe,
if the strict inequality he,(t) < he,(t) holds for all t. Finally, we say that p., dominates
Pe; in the likelihood ratio order if p.,(t)/pe,(t) is monotone increasing in t. In this case

we Write Pe; <ir Pe;-
We can now state the following result.

Proposition 3..3 The following is true

o If pe. Zpr Pe;s then P, e, (Zf,T[l’k]) 18 monotone decreasing with k and hence, so is

Te(t, k) o Pe; Shr Pe, for alli # j.

® If pe; <ir Pe; (Pe; <ir De;)s then Py, o (t, T1x) 48 monotone increasing (decreasing)
in default times 1)1, and hence, so is x,(t, T[Ln]) if De; <ir De, (pe]- =i De;) for all

i 7.

201f a default time distribution has a lower hazard rate, it clearly also has a lower default risk.
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The results of Proposition 3..3 are very intuitive. Indeed, if a default time distribution
has a lower hazard rate, then for every time instant, the probability of default’s happening
instantaneously is smaller. Therefore, fewer defaults should occur over any given period
of time. Hence, Py, . (f, 71,) is decreasing with k& and, consequently, it is optimal to
punish the intermediary for every new default. The likelihood ratio property is also very
intuitive: It means that the likelihood of the effort e; relative to the effort e; is monotone
increasing with the time of default and hence, so is Pje, ¢, (f, 71,5). In other words, the
later the default takes place, the higher is the likelihood of the effort e;. This property
naturally makes punishing the intermediary for early defaults optimal. As an illustration,
note that in the HPT (2011) model, we have p,, (t) = A e 2 | p,, (t) = Ag e M with
AL < Ag, and therefore both hazard rate and likelihood ratio properties hold: We have

AL = hepy (t) < hep (1) = A and pe, (t) <ir Pey (1)

4. The risk neutral limit

It is important to note that the simple form of the optimal contract is based on the
assumption that the investor is able to control the intermediary’s consumption, or, equiv-
alently, that the intermediary cannot privately save. The introduction of private savings
may significantly alter the optimal contract when the risk aversion of the intermediary is
not too small. Indeed, in this case, the intermediary may undo incentives using private
savings to smooth consumption. However, introducing private savings makes the opti-
mal contracting problem significantly more complicated and investigating this important
problem is beyond the scope of this paper. For this reason, everywhere in the sequel we
will assume that the risk aversion of both market participants is sufficiently small.?! Tt

turns out that, when the desired effort level implements the lowest default hazard rate

21This is a natural assumption in a constant absolute risk aversion (CARA) setting. For example, an
absolute risk aversion of 107 corresponds to a relative risk aversion of one for an agent with a billion
dollar capital.
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and the risk aversion of the market participants is sufficiently small, the optimal contract
exhibits extreme punishment for defaults: It makes positive transfers to the intermediary

only until the time of the first default. Namely, the following is true:

Theorem 4..1 Suppose that p., has the lowest hazard rate and both agents have expo-
nential (CARA) preferences

us(z) = Ag'(l—e ™% up(z) = AZ'(1 —e 457,

Then, if Ap, As are sufficiently small and Ap/As is not too large, the optimal contract

{zr} implementing effort e; has x;, =0 for all k > 1.

The intuition behind this result is based on Proposition 3..3: When the desired effort
level leads to the lowest hazard rate, Py, ., is monotone decreasing with k£ and hence,
so is @ (t, 71,4)). Therefore, the optimal contract always makes the largest transfers to
the intermediary in the period [0, 7] before the first default occurs. When agents are
sufficiently close to being risk neutral, concentrating all payments in this time interval
is optimal because the compensation that the intermediary requires for taking the risk
of early defaults is sufficiently small.

To continue the analysis of the risk-neutral limit, we need to impose additional tech-

nical conditions.

Definition 4..2 We say that default time distributions are k-reqular if the function
e~ Ot W (t; { e, ppc}), defined in (7), has at most k local mazima for t € [0, +o0)

for any Lagrange multipliers ppc > 0, pyc; >0, 7 # j.

The following is true:
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Theorem 4..3 Under the hypothesis of Theorem 4..1, suppose that default time distri-
butions are k-reqular. Then, if Ag, As — 0 so that Ag/As stays bounded, any contract
in the limit set is of the following form:*

There exists a k € {0,--- k — 1}, an increasing sequence of time instants 0 < to <
ce < t, < 00” and a sequence y; € Ry, i =0,--- Kk, such that the optimal schedule of

transfers to the intermediary is given by

K
E 1t=ti 1t,‘<7’1 Yi -
i=0

To understand the intuition behind the optimal contract of Theorem 4..3, note that
when both agents are risk neutral, the most efficient way to provide incentives for a given
effort level is to concentrate all the contract’s payments in the time instants with the
highest likelihood of the desired effort level**. When the effort level e; leads to the lowest
default hazard rate, these likelihood-maximizing time instants ¢;, ¢ = 0,--- ,x always
belong to the time proceeding the first default, as we show in Theorem 4..1; the number
k of these instants is bounded from above by k, the maximal number of local maxima of
the weighted likelihood. The sizes y; of the corresponding payments are determined by
the severity of the corresponding IC constraints. This contract structure can also be well
understood from the tradeoff between learning and impatience. Clearly, investors would
like to postpone payments so that they can learn more from observing a longer history of

defaults. However, delaying payments is costly because of the relative impatience of the

22Formally, it means that, for any sequence of risk aversions converging to zero, we can pick a sub-
sequence such that the corresponding contracts converge to a contract of the from described in the
theorem. If there is a unique optimal contract in the risk neutral limit, then the convergence takes place
in the standard sense.

231t follows from the proof in the Appendix that there exist Lagrange multipliers upc > 0, uic; >
0, i # j such that ¢; is a local maximum of e~ ="* W (t; {u1c, ppc}) and e~ =00 (5 { e, ppc}) = 1
for all i =0,--- , k. This observation can be used directly to determine ¢;.

24With multiple effort levels, the “highest likelihood of the desired effort” should be interpreted as
“higheSt Ez;ﬁj MIC,iPk,ei@j (t7 T[l,k])~’7
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intermediary. This leads to an optimal incentive provision mechanism characterized by
multiple waiting periods: The intermediary gets partially remunerated for the absence of
defaults during every subsequent waiting period [t;,t;11). So, if no default occurs until
t = to, the intermediary receives the first payment y, and enters a waiting phase (o, 1]
If no default occurs until ¢ = t;, the intermediary receives the next payment y;, etc.,
until either the last payment gets paid at time t,, or a default occurs, in which case the
intermediary loses all subsequent payments.

It is important to relate our main results (Theorems 4..1 and 4..3) to those of HPT
(2011). Namely, HPT (2011) obtains a special case of Theorem 4..1, assuming from the
beginning that (1) both agents are risk neutral (without taking the limit Ag, Ag — 0);
(2) the effort choice is binary; and (3) default time distributions are exponential. In
this case, it is possible to show that p., <, pe,, and the default distributions are 1-
regular, so that the optimal contract is characterized by a single payment after a single
waiting period. Being the first of its kind, the result of HPT (2011) is important for
understanding the nature of optimal incentive provisions for securitization. In particular,
HPT (2011) identify two key economic forces that determine the shape of the optimal
contract: (1) the investor wants to pay the intermediary as soon as possible to exploit
the impatience wedge and (2) an interaction between the limited liability and incentive
compatibility constraints creates value for information “quality”. Information quality
improves over time and therefore the timing of payments is a major incentive provision
mechanism.

Theorems 4..1 and 4..3 show that the same economic intuition still holds in a more
general setting and the results of HPT (2011) are robust. Namely, Theorem 4..1 shows
that extreme punishment for defaults, a property of the optimal contract that HPT
(2011) obtained in the risk neutral setting, is robust to small perturbations to risk neu-

trality so long as higher effort leads to lower hazard rates. Theorem 4..3 shows that a
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lumpy contract is optimal in the risk neutral limit, as in HPT (2011); the only differ-
ence is that multiple payment dates may arise. For example, when default distributions
are exponential, it is possible to show that they are (K — 1)-regular, with K being the

number of possible effort levels. Therefore, the following is true.

Proposition 4..4 Suppose that p..(t) = N\;e it for alli =1,--- | K, with \y > -+ >
Ai. Then, default time distributions are (K — 1)-regular, and therefore the result of
Theorem /..3 holds with k = K — 1.

The fact that multiple waiting periods are optimal in the multiple effort case is quite
intuitive: Each payment date prevents the intermediary from deviating to the corre-
sponding alternative effort level. Namely, the shortest waiting period (0, %) incentivizes
the intermediary to exert an effort higher than e;, the second payment (at time ¢;)
provides incentives to exert an effort higher than e,, etc.

Theorem 4..3 can be used to explicitly calculate the optimal payments y;, as well
as the optimal payment times ¢;, for any number of possible effort levels. However,
for simplicity, everywhere in this section we confine ourselves to the binary effort case.
Furthermore, we will often assume that the default time distributions come from the

Black and Cox (1976) structural default model.”” Namely, we assume that

(m't+a-)2
s _ mjtta;

() = ——Y o e i H 11

for some a;,m;,o; > 0. In this case, it is possible to show® that p., <p, pe,, if and only

if 42 > 9L gpd MHERE > MLAL  Define
oH or, oY ot

(et — 1)
L= (Gep (1)) Gey (1))Y

o1(t) = and t7 = argrtn>i(1)1 o1(t) . (12)

25See Section 6. for a detailed discussion of this model.

26See Proposition B.2 in the Appendix.
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The following is true:

Theorem 4..5 Suppose that the effort is binary, default time distributions are from the
Black and Cox model, pe, <pr Dey, and that the desired effort level is ey. Then, in
the risk-neutral limit, the optimal contract makes a lump sum payment yo > 0 to the
intermediary at time 0, and then a lump sum payment y; > 0 at a time t* > 0 if
no default occurs before t = t*. Furthermore, there exists a threshold C* such that for

Cy < C*, we have:

e”tf (CH — CL)
(GeH (tT))N - (GeL (tT))N ’

t*:ti,ylz

and yo > 0.

Figure 1 provides an illustration for the convergence result of Theorem 4..5.

Insert Figure 1 Here

A very important consequence of Theorem 4..5 is the optimality of a strictly positive
payment to the intermediary at time zero when the cost of effort is not too high.?’
To understand the intuition behind this result, recall that the structure of the optimal
contract is determined by optimal tradeoff between waiting for better information (in
order to reduce the cost of incentive provision) and paying the intermediary early in order
to exploit the impatience wedge between the intermediary and the investor. This tradeoff
is determined by the dynamics of the functions Py, ,, and e_(V_”)t\Ifk, representing the

“discounted value of incentives”. By Theorem 4..1, extreme punishment for defaults is

270ur numerical results indicate that the condition Cy < C* of Theorem 4..5 is absolutely non-
restrictive. In fact, the threshold C* is so high (higher than the total value of the assets in the pool)
that the inequality Cy < C* holds for any reasonable parameter values. For the sake of completeness,
the case of very high effort cost (i.e., Cg > C*) is considered in the Appendix.

23



optimal and we can confine ourselves to the case k = 0, with

e (t) = e O (upc + e Poey ey (1))

and

Pt = 1= (G265)

If higher effort reduces default hazard rate, the function Py, ., (t) is monotone increas-

ing with £. The derivative

d

S(t) = 5 Pocy.ent (13)

can therefore be interpreted as the speed of information arrival. If the investor and the
intermediary are equally patient, it is always optimal to wait for more information and
indefinitely postpone payments to the intermediary. However, when v > r, waiting is
costly and the interplay between the size v — r of the impatience wedge and the speed
of information arrival determines the optimal timing of payments to the intermediary.
Clearly, when the effort cost C'y is sufficiently high, incentive provision is very costly and
only a very large delayed payment can satisfy the (IC) constraint. The (PC) constraint
is then satisfied automatically. In contrast, when C}y is sufficiently small, the moral
hazard problem is mild and even a small delayed payment is sufficient to provide the
necessary incentives. In this case, a positive initial payment yo may be the optimal way
to satisfy the (PC) of the intermediary. Omne very intuitive sufficient condition is that
the speed of information revelation is zero at time zero. Indeed, in this case it may take
a long time for better information to arrive and paying the intermediary immediately is

optimal. This intuition is formalized in the following proposition

Proposition 4..6 Suppose that higher effort reduces default hazard rate, the densities

Pey (1), De, (1) are continuous for small t, and the optimal contract is of the form described
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in Theorem /..5. If

then there exists a threshold C* such that optimal the payment yq is strictly positive for
all Cy < C*.

As an illustration of this result, let us consider the following modification of the HPT
(2011) model: Suppose that there exists an s > 0 such that no default occurs until time
5.%% That is,

peH = ]-tZS AL G_AL(t_S) , peL — 1t25 AH e_AH(t_S) (14)

for some Ay > A > 0. Then, it is possible to show that the optimal contract for this
model has the form, characterized in Theorem 4..5. However, since no information is
revealed up to time s, we ought to have ¢* > s. When the delay s is sufficiently large,

the impatience wedge makes a positive initial payment optimal. The following is true.

Proposition 4..7 Suppose that the default time distributions are given by (14). Then,
the optimal contract has the form, described in Theorem 4..5 with some yo(s), y1(s), t*(s).

Furthermore, if the cost of effort satisfies

g — AN
Cy < Cp + <U§+OL>M, (15)

v

then, there exists a § > 0 such that yo(s) > 0 if and only if s > 5. By contrast, if (15) is

violated then yo = 0 for all s > 0.

When the speed of information revelation is non-zero at time zero, the situation
is more subtle. What matters then is not only the speed S(t) (see (13)) of information

arrival, but also the rate at which S(t) is changing. Suppose that the speed of information

Z8We thank an anonymous referee for suggesting this very nice example.
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arrival is monotone increasing with time. Then, if the rate at which the speed is increasing
is sufficiently large (larger than the impatience wedge v — r), it is optimal to delay the
payments further and wait until even “better” information starts arriving. In this case,
it may be optimal to make a small payment to the intermediary at time zero and then
wait until the speed starts increasing really fast, and only then make the next payment.

The following is true.

Proposition 4..8 Suppose that higher effort reduces default hazard rate, the densities
Dey (1), e, () are continuously differentiable for small t, and the optimal contract is of

the form, described in Theorem J..5. If S(0) > 0 and

> y—r
then there exists a threshold C* > 0 such that the optimal payment yo is strictly positive
if and only if Cy < C*.

As an example, consider the HPT (2011) model. Then,

d
%S(t) = —((A\g — A)N)2 e~ PNt

and therefore the speed of information arrival is decreasing over time and Proposition

4.8 is not applicable. As HPT (2011) show, y, is always equal to zero in this case.

The following proposition provides some useful comparative statics results about the

maturity ¢* of the optimal contract and the optimal payment .

Proposition 4..9 Under the hypothesis of Theorem 4..5, the maturity t* = t7 of the
optimal contract is always monotone decreasing in N and ~v — r and is increasing in the

size of default risk under high effort. The payment y, is increasing in y—r, and decreasing
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in N and in the size of default risk under high effort. Furthermore, t* converges to 0 as

N — oo.

Intuitively, maturity ¢* and the size y; of the delayed payment are determined by the
severity of the moral hazard problem and the conflict of interest between the investors
and the intermediary. If exerting high effort only marginally decreases default risk,
the moral hazard problem is severe and the optimal waiting period is long. When the
intermediary is relatively impatient, delaying payments is costly for the investor, making
it optimal to reduce the waiting period [0, t*). To compensate for this cost and to improve
incentives, delayed payment y; has to be made larger. Finally, the fact that the maturity
t* is decreasing with N is justified by the information enhancement effect of pooling,
emphasized in HPT (2011): When N is large, investors can learn much faster about the

intermediary’s effort, simplifying the problem of optimal incentive provision.

The elegant characterization of the optimal contract in the risk-neutral limit, provided
in Theorem 4..3, critically depends on the assumption that the desired effort level imple-
ments the lowest default hazard rate. When this assumption is violated, Theorem 4..1
does not hold in general and extreme punishment for defaults might not be optimal. Con-
sequently, in the risk-neutral limit, the optimal contract might make positive payments
to the intermediary even after a few defaults have occurred. In our benchmark model
with binary effort and Black and Cox default time distributions, Proposition B.2 implies
that high effort does not lead to a lower hazard rate if and only if my/oy < mp/op.
In this case, for a large ¢, the default hazard rate h., (t) under low effort is significantly
lower than the rate given a high effort, and the results of Theorems 4..1 and 4..3 do not

hold in general. The following is true:

Theorem 4..10 Suppose that the effort is binary, default time distributions are gener-
ated from the Black and Cox model, and my/oy < myp/or. Suppose also that v — r is

sufficiently small. Then:
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e (Conditional on observing n defaults, maximal transfers to the intermediary happen
when these defaults take place immediately one after another, and we have
erp(t) = max zp(t; ) = oe(t; (Gt 1))
(1, k) <t

e The mazximum of i (t) over t is monotone increasing in the number n of defaults;

and

o There exist n* > 0 and t* > 0 such that, in the limit as As, Ag — 0 so that
Ap/Ag stays bounded, the contract only makes transfers to the intermediary when
n* defaults occur at time instants, sufficiently close to 7, and with one immediately

after another.

As we have explained, in the case when both agents are risk neutral, the optimal
incentive alignment mechanism can be implemented by concentrating payments in the
state that maximizes the likelihood of a high effort level; however, the timing of transfers
has to be adjusted for the relative impatience of the intermediary (y > r). Because the
desired effort level does not implement the minimal hazard rate, Py, ., (¢, T[Lk]) increases
with the number k of defaults when ¢ is sufficiently large. When the intermediary is
sufficiently impatient, postponing payments into the future is too costly for the investor,
and the optimal contract will take the same form as in Theorem 4..1. However, when
~ is sufficiently close to r, waiting for a few defaults to occur (namely, n* defaults in
Theorem 4..10) is optimal, and the contract takes the form described. We refer to this
type of payment as paying for default cascades.

It should be pointed out that the optimal contract, described in Theorem 4..10 has
a very unattractive feature of being highly vulnerable to default manipulation by the
intermediary. Indeed, if the payment is only made to the intermediary following a cas-

cade of defaults, the intermediary has strong incentives to collude with the borrowers
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and arrange that they default at the “optimal” time. This sensitivity to intermediary
manipulation is more troubling than that to investor manipulation since intermediaries

typically have direct access to borrowers.’

5. Securitization and the optimal effort level

In this section, we use our explicit expressions for the optimal contract in the risk-
neutral case to study the effect of securitization on the equilibrium effort choice. For
simplicity, we assume that the effort is binary (i.e., e € {ey,er}), and the effort costs
are proportional to the number of assets in the pool (i.e., C; = N¢; , j = H, L for some
cr, cg > 0). The outside option of the intermediary is simply retaining the initially

created asset pool (the “originate-and-retain” model), that is,
Ug = max Us({du}. ;)
j

and the outside option of the investor is zero: U = 0.
In the absence of moral hazard, the agent who has the bargaining power can extract
full surplus from the counterparty. In our case, this first best surplus (conditional on a

given effort level e;) is equal to
FB;(N) = Up({du}.e;) = (Us+Cj) = N - FBy(1) (16)

and is proportional to the number of assets in the pool.
We start with the following simple observation: Because the intermediary is relatively
impatient (v > r), providing incentives is costly. Therefore, the most efficient way to

implement low effort is simply to make a single payment at time zero. This is formalized

29%We thank an anonymous referee for this important observation.
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in the following proposition.

Proposition 5..1 In the risk-neutral case, the optimal contract for implementing low

effort is to pay the intermediary a fized lump sum at time zero. Furthermore, we have:

e In the competitive case, this lump sum equals Ug({d,}, er) (full surplus extraction

by the intermediary).

e [n the monopolistic case, the lump sum equals UL + Cy, (full surplus extraction by

the investor).

In particular, total surplus coincides with FBp,.

In the high effort case, (IC) constraint always limits the set of contracts and reduces
total surplus.”’ HPT (2011) show that pooling has an information enhancement effect:
Increasing the number of securitized assets simplifies the problem of incentive provision
and makes it less costly. The following proposition shows that, in fact, the total surplus

loss vanishes in the limit when the number of securitized assets becomes large.

Proposition 5..2 Under the hypothesis of Theorem j..5, the total second best surplus

SBy for high effort is independent of bargaining power allocation and is given by:

SBu(N) = N (FBu(1) = (e —c) du(t)) - (17)

The total surplus loss per asset (FBy(N) — SBy(N))/N is monotone decreasing in the

number N of assets and converges to zero as N — o0.

Now we are ready to discuss the optimal effort choice in the presence of securitization.

Because v > r, the increase in the pool value resulting from a higher screening effort is

30IC constraint always binds for the optimal contract implementing high effort. Indeed, if it does not
bind and the investor is risk neutral, the optimal contract makes deterministic payments independent
of the default history, in which case the intermediary optimally chooses a low effort.
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always higher for the investor than for the intermediary; that is,

Up({0n},enr) — Up({on},en) > Us({on},en) — Us({0n},er). (18)

By (16), the optimal effort level is high in the first best case if and only if

UB({dn}aeH) — UB({(Sn}aeL) > CH—OL. (19)

Indeed, if the cost of effort is higher than the increase in the market value of the pool, it
will never be optimal for market participants to choose high effort. Because the second
best surplus is always lower than the first best one, condition (19) is also necessary
for high effort to be optimal in the second best case. Combining this observation with

Proposition 5..2, we arrive at the following result.

Proposition 5..3 In the presence of securitization, the equilibrium effort level is eg if

and only if the following is true:

Us({on},em) — Us({0n},er) > (14 ¢1(8]))(Cu — Cr). (20)

Consequently:

e [f (19) does not hold, then the equilibrium effort level is er,, both with and without

securitization and independent of bargaining power allocation.

o If (19) holds, then there exists an N* > 1 such that the equilibrium effort level
1s eg if and only if N > N*. In particular, for sufficiently large N, securitization

always improves the equilibrium screening effort.

Proposition 5..3 has direct implications for regulating securitization. Imposing a lower

bound on the number of assets in the securitized pool and using the correct incentive
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provision mechanisms might significantly improve an intermediary’s screening incentives.

To provide a better understanding of this effect, we state the following proposition.

Proposition 5..4 Consider a 1-parameter family of distributions G(t, &), such that G(t, «)
is continuous and increases in o in the hazard rate order. Suppose that G.,(t) =
G(t,a;), j = H, L. Fiz the parameter ar,. Then, there exist thresholds @ > o in (o, +00)

such that:

o Without securitization, the intermediary chooses high effort if and only if ag > &;

and

e In the first best case, the investor chooses a contract implementing high effort of

the intermediary if and only if ag > «; and

e For all ag € (a,@), there exists a threshold N*(ap) such that the equilibrium
effort level is high if and only if N > N*(ay). Consequently, for all ay € (o, @),
securitization strictly improves the equilibrium screening effort if and only if N >
N*(ay).

Figure 2 illustrates how the minimal number N* of assets in the pool depends on
various model parameters. For example, we can see that, even when screening increases
the distance to default by 30% (from ar = 0.2 to ay = 0.27), the intermediary will
choose a low effort without securitization, whereas, with just a few hundred assets in the

pool, securitization makes a high effort optimal even for ay = 0.23.

Insert Figure 2 Here

6. The Black and Cox Default Time Distributions

In this section, we provide a detailed analysis of a special case of our general model

in which the default times are generated by the Black and Cox (1976) structural default
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model.*! In this model, the borrower defaults when a given stochastic process X; falls
below a given threshold Xpz. This process can be interpreted as the operational cash
flows (when the borrower is a firm) or income (when the borrower is an individual), or
the house price (for the case of a mortgage). The process X; is assumed to follow a

geometric Brownian motion, with the drift u and volatility o,

dXt = Xt (ll,dt + O'dBt> y

where B, is a standard Brownian motion. We assume that X; is non-observable for the
outside investors. This is definitely true in the case of consumer loans or mortgages, and
it is usually justified in the literature by incomplete accounting information for the case
when the borrower is a firm (Duffie and Lando, 2001). Although the intermediary might
have some information about X; for ¢ > 0, we assume for simplicity that this information
is non-contractible and that the contractual payments can only be conditioned on the
default history.*” The probability distribution of the default time 7%, the first time X,

falls below Xp, is given by

t —2ma t—
Prob[r®# <] = F*™(t) = 1 — ‘D(m M) e @(m a) . (21
0\/¥

which has the density

() = i (22)

with

m =pu—050", a = log(Xe/Xp) > 0.

31The Black and Cox (1976) model has now become a benchmark for calculating default probabilities.
See Duffie and Singleton (2003) for a detailed analysis and applications.

32For example, this information may be soft and difficult to transmit to outside investors. Alterna-
tively, if the number N of assets in the pool is large, monitoring all of them is extremely costly for
outside investors.
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Here,

1 * 2
O(x) = \/_2_7r/ e Y 2dy

is the cumulative distribution function (CDF) of a standard normal distribution. For
simplicity, we always assume that the (risk adjusted) growth rate m is positive for all
borrowers (i.e., m > 0). A very important property of Black and Cox default time
distributions it that they are defective: There is a strictly positive probability P%™7

that the borrower will never default. Namely,

2ma

Prob[r*f =o0] = P%™ =1 — e o2 . (23)

This defectiveness is a very important economic phenomenon that appears in any model
in which there is growth: When the stochastic distance to default, log(X;/Xg), is grow-
ing with positive probability, the borrower might never default. As we will show, this

property is responsible for several surprising features of the optimal contract.

,0

The following proposition characterizes the dependence of p®™“ on the parameters

(a,m,o).

Proposition 6..1 The density p®™? is

(1) increasing in a,m and decreasing in o in the sense of <p, order;

(2) increasing in a in the sense of the <. order;

(3) decreasing in m with respect to the <. order; and

(4) neither increasing nor decreasing in o with respect to the <. order.

Property (1) is very intuitive: Clearly, a borrower with a higher initial distance to

default a, a higher growth rate m, or a lower volatility ¢ will default with a lower
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probability at every instant. Property (2) is also to be expected: Because borrowers that
have higher initial capital default later, on average, the likelihood of the borrowers having
higher initial capital should be monotone increasing in the time of default. However,
property (3) is counterintuitive and surprising: It means that the later a default occurs,
the higher is the likelihood that the borrower has a low cash flow growth rate. The
reason is that the density p®™7 is defective. A borrower who has a higher m, also has a
higher probability of never defaulting. However, conditional on the event that a default
occurs in finite time, it happens earlier, on average, for a borrower with a higher growth

rate m.

In the Black and Cox setting described above, the intermediary’s screening effort has
a very clear meaning: He can screen the borrowers for their initial distance to default a,
their growth rate p, and their volatility 0. We assume that, conditional on an effort level
e;, all borrowers in the pool have the same parameters (a;, m;, 0;).”* Although the actual
screening procedure implemented by banks is more complicated and relies to a significant
degree on soft information that is difficult to quantify, the three parameters (a, m, o) have
a very clear economic meaning and can be directly related to observable quantities. The
parameter a can be clearly associated with the borrower’s initial creditworthiness and
is therefore the easiest to estimate. The cash flow volatility ¢ can also be estimated if
a sufficient amount of past income/cash flow/house price data is available. The growth
rate parameter m is the most difficult one to estimate empirically. However, it is possible
to use observable information to get some rough idea about its magnitude. For example,
for consumer loans, information on education level and past employment and associated
income growth can be used to provide information about p. In the case of commercial

loans for a real estate company, rental income and length of leases could be used to

33 Alternatively, we might assume that the parameters (aj,mj,0;) are themselves random and are
sampled from a probability distribution, determined by the effort level. Our analysis can be easily
extended to this more general setting.
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estimate pu. However, even if a higher screening effort decreases default risk, it does not
necessarily lead to an increase in both a, m and a decrease in the volatility . The
following proposition describes the effect of screening potential borrowers on the basis of
a, m and o on the default time distribution.

Combining Proposition 6..1 with Proposition 3..3, we get that the optimal contract

might exhibit several surprising features:

(1) If the intermediary is able to select borrowers with higher growth, then the optimal
payments are decreasing with the number of defaults. However, when defaults
occur after a sufficiently long time period, the optimal contract exhibits punishment

for late defaults: The intermediary will be payed less if the defaults occur too late;

(2) If the intermediary selects borrowers with high initial distance to default but with
low growth, the optimal contract will exhibit punishment for too few defaults:
Payments to the intermediary will increase with the number of defaults when these
defaults occur sufficiently late. Nevertheless, after a fixed number n of defaults is

observed, the intermediary will be paid more if these defaults occurred late.

Indeed, selecting borrowers with a higher growth rate increases the probability that
the defaults will never occur. However, if the defaults do occur, they should happen early.
Therefore, contracts that punish for late defaults is an efficient way to provide correct
incentives. The same intuition applies to item (2): If the cohort of borrowers selected
with the desired effort level is supposed to have lower growth rates, the corresponding
default hazard rates would be higher for sufficiently large ¢t. Therefore, defaults will tend
to be more concentrated, and the optimal contract punishes the intermediary for too few

defaults.
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7. Conclusion

The recent turmoil in the asset-backed securitization market has led regulators and
market participants to reflect upon the role of misaligned incentives in disrupting the
efficient functioning of both financial and real sectors of the economy. Given the im-
portant benefits of securitization, including better risk sharing and a reduced cost of
capital for the intermediary (see, e.g., Pennacchi, 1988), a properly organized securitiza-
tion market might significantly improve society’s welfare. However, natural asymmetric
information and moral hazard problems between intermediaries and investors can lead
to serious dysfunctionality and illiquidity in these markets. The collapse of highly rated
structured finance products in 2007-2008 has obviously shown that credit ratings failed
to resolve these important problems. Therefore, new mechanisms need to be developed,
providing intermediaries with better incentives for monitoring the credit risk of securi-
tized assets. Although new regulatory requirements (e.g., 5% retention rule) introduced
in the Dodd-Frank Wall Street Reform and Consumer Protection Act are aimed at im-
proving intermediaries’ incentives, their efficiency may be highly sensitive to a particular
economic environment.

In this paper, we study how efficient incentive alignment mechanisms can be designed
to (partially) resolve the problem of incentive alignment in the securitization market. We
show that the structure of optimal securitization contracts depends in a very non-trivial
way on the nature of the underlying credit risk. In stark contrast to the conventional
wisdom, we find that securitization improves the intermediary’s monitoring incentives,
even when the intermediary has full bargaining power in designing the optimal contract.
The reason is that, when investors are sufficiently sophisticated (fully rational), they cor-
rectly anticipate the intermediaries’ monitoring effort and optimally respond to this level
of effort by requiring a higher credit risk premium. This endogenous incentive provision

mechanism naturally improves intermediaries’ incentives and leads to more efficient risk
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allocation. Despite its being abstract and theoretical, our model has many realistic fea-
tures: It allows us to take into account of risk aversion of all market participants, as well
as for various sources of the credit risk of the assets collateralizing a structured prod-
uct. We believe that future research, introducing more realistic market features (e.g.,
regulatory constraints, macroeconomic risk, hedging and saving for both investors and
intermediaries), may lead to contracts that can eventually become an industry standard.
Incorporating systemic risk (e.g., risks of recessions or stochastic depreciation in home
prices) is another important direction in which our results can be extended. For example,
in addition to determining the average default risk of the securitized assets, intermedi-
ary’s effort might also affect the amount of systemic risk in the securitized portfolio.
This may potentially lead to systemic crises, as in Farhi and Tirole (2010), and one can

study efficient ways of preventing these welfare-decreasing outcomes.
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Figure 1: Convergence to the lump sum payments (Theorem 4..1) at ¢J ~ 11 months
as the intermediary’s risk aversion Ag goes to zero. The unit of horizontal axis is one
year. Parameter values: Ag =0, r = 5%, v = 10%, C = (2%) X%, N =100, R/u =
50%, u=1, (amg, pm,on) = (0.4,0.04,0.1), (ar, pr,or) = (0.2,0.04,0.1) (Growth rate
and volatility are taken on a yearly basis.)
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Figure 2: [Illustration for Proposition 5..4.  Parameter values: Ap = Ag
0,r = 5%, v = 10%,8%,6%,C = 2% R/u = 50%,u = 1,(ar,pr,0rL)
(0.2,0.04,0.1), (ag, g, on) = (0.2,0.04,0.1) (except for the varying parameter).
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Appendix

A Proof of Theorem 3..1

This section is devoted to a proof of Theorem 3..1. For the reader’s convenience, we

first provide a brief outline of the main arguments.

e To preserve concavity of the problem, it is useful to make a change of variables
from the optimal payments x; to the utility rate ug(zy) that the seller derives from
these payments. The reason is that, with this change of variables, the participation
constraints and incentive compatibility constraints become linear and the problem
can therefore be tackled by standard convex programming techniques. In particu-
lar, we start with Lemma A.2 and express the risk sharing rule using the changed

variables.
e Lemma A.3 derive an expression for the seller’s utility.

e We then use standard duality results (Lemma A.4) to prove existence (and unique-

ness) of the optimal contract.

e Finally, in subsection A.1, we derive fully explicit necessary and sufficient con-
ditions for the existence of the optimal contract for the case when the effort is

binary.
The following lemma provides an explicit expression for the joint density of (71, -+, 7n).

Lemma A.1 The joint density of (11,--- ,7), k < N conditional on the effort level e;

15 given by

N! N—k

f]:j (7—17 te 7Tk> = lic.<n mpej (7-1) “r Dey (Tk> (Ge]- (Tk)) (24)
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See David and Nagaraja (2003).
We will also need an auxiliary result to characterize the nature of risk sharing between

the intermediary and the investor.

Lemma A.2 Let w(z) = (us) *(z). Then there exists a unique solution J(x;d) to the
equation

ug(d — w(J(z;d)) w'(J(z;d) = z. (25)

Lemma A.3 The seller’s expected utility from the payment of xy(t, k), conditional

on effort e, is given by

(e, T t) e ug(ap(t, Tk)) d7y- - - dr dt (26)

Rk+1
where

def N!

@ij(Th Cy Thy t) - mlﬁé"'émétpe(7—1> o 'pe(Tk) (Ge(t))N_k : (27)

Proof. The proof is not completely straightforward because we must attend to the

fact that the probability density may be defective:

lim G.(t) = P> > 0.

t—o0
We have

e o T D)t
Plrgs € djm, - 1) = Lesalmo Dt

Je(m, )
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and therefore, using the identity

o) N—-k _ oo \N—k
/t Pe(Tht1) (Ge(Trs1))™ " drpgr = ) N—/EPE ) ’ (28)
we get that
_ =g [Ty g G ()
Plrr =4ocim-os m] = 1 = [ (=G — e

Therefore, using (28) once again and changing the order of integration, we get:

))N—k—l

e e T . Pe(Tr1) (Ge(Thtr

Tk+1
X / e‘”t uS(wk(taT[l,k]»dthl s 'di+1

Th +00 G, Nek _ co\N—k
= fi(m, - aTk)/ e Us(ifk(tﬁ[l,k]))( (t)()Ge(Tk))f(V}jek ) dtdr ---dmy,

R¥ T
(29)

Therefore, the seller’s expected utility from the payment of (¢, 71 ), conditional on

effort e, is

Gelt)* — (P)"

e

+o0o (
felr, -, / e " ug(zp(t, 7 ) - dtdry ---dry,
E\T1 ) . k [1,k] (Go(7))NF 1

Rk
(Poo)ka +o00 .

(71,0 — 7 t dtdry ---d 30
b e g [ s madn an @0
= (e, T t) e ug(ap(t, Th)) dtdr - - - dry,

Rk+1
where we have used the identity
(Ge(t)F

¢2(71"" 7Tk’t) = flS(Tla"' ;Tk) ( (31)
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Recall that the utility rate of the seller from the contract {z,} is:

vi(t) = us (2x(1)) (32)

and

w(z) = (us)™'(2) (33)
is the inverse of the seller’s utility.
We only study the monopolistic case, the other case is analogous. We will use the
standard duality approach. Namely, we can introduce the dual function

(e, ppc) = {l;ﬂn?}igo {UB({5n — Tn},€;)

(34)
+ 3 e Us({an},e5) = Us({an} ) + pro(Us({za}, ) — U) |

i#]
Then, using the same change of variable (to the utility rate) as above, we can transform

the optimization problem over {x,} into a concave one, and it follows that the maximum

is attained at

T (b, Tm); {1, ppc}) = 1z, w (J (Vo (t, 70 {pac, pec}) ; 00)) - (35)

The following result follows by standard duality arguments (see, e.g., Kramkov and

Schachermayer (1999)):

Lemma A.4 The function u(uc, ppc) s conver. Suppose that it attains a global mini-
mum over RET at a point {pic, 1he}-

Then, the corresponding contract T, (t, Tnn); {4, Hpc}) @S an optimal contract.

Thus, in order to prove existence of the optimal contract, it suffices to show that the

function a(pc, ppc) does attain a minimum. By standard compactness arguments, it
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suffices to show that @(uic, upc) converges to +o0o as {uc, ppc} — o0. Indeed, pick
a sequence {jc, the} — 00 converging to infinity. Then, passing to a subsequence if
necessary, we may assume that either (a) there exists a £k > 0 such that ,uﬁdc — +00
as | — oo or (b) pbe — o0 as | — oco. By (34), choosing a sub-optimal contract
{z,} always gives a lower bound for @. Let {Z,} be a contract that is strictly incen-
tive and participation constraint compatible (the set of such contracts in non-empty by

assumption). Then, we have

Wlpher the) = {Un({8n = 3a}5)

+ > nite (Us({Fa} e) = Us({Ta} ) = npc(Us({an},e;) = UD) |
i#j (36)

> Up({6n — Zn},€5) + piic(Us({Zn}, ;) — Us({Zn}, er))

+ wpcUs({Zn},e;) = UG — +oo

as [ — 00, and the claim follows.

A.1 The Binary Effort Case: Precise conditions for Existence of the Optimal

Contract

In the general case of multiple effort levels, we prove existence of an optimal contract
assuming that the set of strongly incentive- and participation-constraints compatible
contracts is non-empty. In this subsection, we consider the case of a binary effort e €
{en,er} and derive fully explicit necessary and sufficient conditions for the existence of
the optimal contract. We consider the contract implementing high effort level ey and we
use sub(super)-scripts H and L instead of ey and ey, unless otherwise stated. We also
denote Py = P ¢, ¢, -

Let us first consider the case when the buyer has full bargaining power in designing
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the contract. The problem for the buyer can then be written as:**

N-1

s Z / U (r1y e t)e T up (O — w(ok(t, o)) dt dr -+ - dry
{vk k=0, ..Nt vpg>ug(0) =
- R++l

under the incentive compatibility (IC) constraint
N-1
> / (WH =B (10, - iy t)e ™ ot T )dt dry - - - dry > C
k=0pihs

with C' = Cy — Cf, and under the individual rationality (participation) constraint
N-1
Z / V(T T t)e o (t, T )dt dry - dry > U + O
k=0pihs

for the seller. Clearly, we can rewrite the IC constraint as

N—1
Z / ka,ei,ej (71, T, t)e o (t, T )dt dry - - dry, > Cy

k:O}R,i+1

Denoting the Lagrange multipliers for the two constraints by p; and ps, the first order

condition for v takes the form
—e "Muly (0, — w(vg)) W' (vg) + e "Py + e =0

when the limited liability constraint (LL), vy > ug(0), is not binding and v, = ug(0)

34Here, {vx > ug(0)} is the transformed limited liability constraint.
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otherwise.”> Thus,

e (t, TI1,k]s M1, p2) = max {0, w (J ((G(T_W)t(MPk + Mz)) ;5k))} .
Define

gr(p, p2) = /%f(ﬁf" T t) Po €™ ug(x(t, Tk, g, o) )dt dry - - - dy,

REF
(37)
hi(pn, p2) = /@/f(ﬁw' oo t) € ug (wx (L, Tk, s o) )dt dry - - - dy,
RAH1
and
N-1
Fi(p, o) = ng(ﬂlalh) - C
k=0
N-1 (38)
Fy(p, po) = hi(pa, o) — Cu — Us.
k=0
Here, as above, C' = Cy — (.
Lemma A.5 We have
Fi(0,) = —C < 0

for any uy > 0 and
F5(0,0) =yt ug(0) — U2 — Cy < 0.

Proof. Indeed, F(u1,u2) + C is the difference between the seller’s utilities from
the contractual payments, conditional on high and low effort respectively. But because
i1 = 0, the payments are deterministic and do not depend on the stochastic process of

defaults, this difference is zero.

35Standard duality arguments imply that these necessary conditions are also sufficient. See Kramkov
and Schachermayer (1999).
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The last claim follows because, for pu; = py = 0, the payments to the intermediary

are identically zero. m
Lemma A.6 We have lim,_,, J(z;d) = us(d — {p) and lim,_,o J(z;d) = ug(ls).

Proof. By assumption, w satisfies w'(ug(+00)) = oo and w'(ug(ls)) = 0. Therefore,

1. / o / —
J_mslgll_ﬁB)uB(d w(J))w'(J) +00

and

lim  wy(d—w(J)w'(J) = 0.

J—ug(s)

The following lemma is a straightforward application of the monotone convergence

theorem.
Lemma A.7 Let Jya = lim, o J(x;d) (< +00). Then,

N-1
lim  F(p1,0) = Juax Y / V(- T e psodtdry - - -dry, — US — Cy

H1—+00
k=0
RAF!
(39)

and

lim FQ(,LLl, ,U/Q) = Jmax 771 - U,g‘ - CH7 (40)

pH2——+00

and

lim Fi(p1,0) = Jmaxz / ¢£(7‘1,--~ Thot)e TPy 1p sodtdr - -dm, — C (41)

H1—+00

Lemma A.8 The function Fi(u1, o) is monotone increasing in py. Thus, if (41) is
positive then there exists a uf > 0 such that Fy(uf,0) = 0. Otherwise, Fi(u1,0) <0 for

all py > 0.

52



Lemma A.9 The function Fy(u1, pa) is monotone increasing in ps. If (40) is positive,
then there exists a unique solution pj to F5(0,us) = 0. This is the optimal contract if
F1(0, p3) > 0.7

Furthermore, the function Fy(u1,0) is monotone increasing in py; therefore, there
exists a iy > ui such that Fy(i1,0) =0 if and only if (39) is positive.

For any 1 € [0, j11],%" there exists a unique py = ((uy) solving Fy(py, po) = 0.

Proposition A.10 The optimal contract when the buyer has full power in designing the

contract ezists if and only if (40) is positive.

Proof. Indeed, if (410) is negative, the IR constraint for the seller is violated for any
contract and therefore the seller will never participate. Suppose first that p} exists and
is finite. Then, if F5(u},0) > 0 then the optimal contract corresponds to (uf,0).

If F1(0, p3) > 0 then the optimal contract corresponds to (0, ).

Otherwise, we know that F(u,0) < 0 for py € [0, fi1] and hence, by continuity, there

exists a solution uy € [0, fi] to

Fy(p1, C(pa)) = 0. (42)

because F1(0,¢(0)) = Fi(0,us) < 0, whereas Fy(f1,((f1)) = Fi(1,0) > Fi(ui,0) =
0 and the existence follows immediately from continuity. To prove uniqueness, we show

that Fy(p1,C(p1)) is monotone increasing in 4. Indeed,

OF,

aC ou
AR (43)
O g—f;

36This can never happen if the optimal contract implements the highest effort level, but it can happen
if the contract implements a lower effort level.

37Tf f11 does not exist, we set 13 = oo.

53



Furthermore,

a T
8_? N /¢£(71,"' ,Tmt)/ "EIPL T (e (i Py + po); di)dE dry - - - dy,
1

Tk

and
8gk = H ! (r—2v)t (r—)t .
a_ == d)k ('7_17-.- ,Tk;,t) € Pk Jx(e (H’lPk’_‘_,uQ)adk)dthldi
H2 o -
Similarly,

O

k

and
oh T
i £ = /%ﬁf(ﬁ,“' ,Tk,t)/ " T (T (P + puo); dy)dt dry - - - dmy
M2 Ri Tk
Therefore,
OFy
d oF, OF\ 5,
—F - - _ - 9M
i (g1, (1)) o 6#22—5‘;’

and hence, to prove monotonicity, we need to show that

0F, OF, S 0F, 0F;
Opz Opr — Oy Oy

We use the following slight modification of the Cauchy-Schwarz inequality.

54

oh T
- /w,f(ﬁ, cee  TEy 1) / er20tp, Jx(e(’"_”t(ulPk+u2);dk)dt dry---dm, =

Igr,
Otz

(46)

(47)

(48)
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Lemma A.11 For any function ¥(x), gr(x), we have

k g YR

> [ vtwe Y [ e > (z ¢k<x>gk<x>dx) |

The required inequality (49) follows now from (44)-(46) and Lemma A.11 if we let

770]3 (ZL’, Tk) = 1/}5((7-17 T Tk t) 1[Tk,ﬂ e(r_?Y)tPin<€(T_7)t(/~L1Pk + ,UQ); dk) (50)

gl%(xv Tk) = ¢I€I(Tl7 o Tk t) l[Tk,T] e(r_27)th(e(r_7)t(/~L1Pk + MQ); dk:)

Finally, the fact that the maturity of the contract is finite follows directly from v > r.

]
Now, let us consider the case where the seller has all the bargaining power. For
simplicity, we assume that /g = —o0.
Then, F} stays the same, but Fj; is replaced by
N-1
Fy(pn, o) = hi(pa, p2) — Up,
k=0
where

hi(p1, po) = / V(T T t)e M up (dy — w(og(t, ) dtdr - - dry

REF
The same arguments already given imply that the following is true.
Lemma A.12 The function ﬁ’g 1s monotone decreasing in s and FQ — —oo when
iy — +oo and there exists a unique solution [ii to Fy(0,[i5) = 0. This is the optimal

contract if Fy(0,a3) > 0.%

Furthermore, Fg(ul,O) 1s monotone decreasing in 1 and therefore there exists a

38Note that this can only happen if we are not implementing the highest effort level.
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fii > 0 such that Fy(fi1,0) = 0. For any py € [0, 1], Fo(p1,0) > 0 and, there exists,

therefore, a unique sy = C(p1) such that Fy(uy, C(p1)) = 0.
Note that, by definition, ¢(7i;) = 0 and ¢(0) = p3.

Proposition A.13 For the case when the seller has full bargaining power in designing
the contract, the optimal contract exists if and only if at least one of the two numbers

Fi(0,p3) <0 and Fy(j11,0) < 0 is positive.

Proof. If F;(0, u}) > 0 then (0, u3) corresponds to the optimal contract.

Suppose now that Fy (0, z3) < 0, that is F(0, C(0)) < 0. Using (25), it is not difficult to
show that F} (11, (1)) is monotone increasing in y1. Now, the claim follows if F (fi1,0) >
0.

However, if Fi(fi1,0) < 0 and Fy(0, ) < 0, then the optimal contract obviously does

not exist. Indeed, the unique pair (p1, 2) has g = 0 in this case, but this contract does

not satisfy the optimality conditions for any finite fipc. =

B Hazard Rate and Likelihood Ratio Properties

Proof of Proposition 3..3. The claim of Proposition 3..3 directly follows from

the following lemma.

Lemma B.1 Suppose that the densities pe, <pr pe;- Then, for any k > 0 and any

1< ST < Tpq1 S
Pree,(tmm) = Py mes) -

Proof of Lemma B.1. By definition, we need to show that

De; (7_1) e 'pez‘(Tk)(Gei (t))Nik < pei(ﬁ) - -pei(Tk)pei (Tk-l—l)(Gei (t))Nﬁk*l
De; (Tl) © " Pe (Tk)<G€j (t))N_k N De; (Tl) " De (Tk)pej (Tk+1)(Ge]. (t))N_k_l ’
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that is

Because, p., <nr pe;, we have

Thus, it remains to be shown that G, (t)/G.,(t) is monotone decreasing in ¢. This follows

immediately from pe, <p, pe; and from the identity

d (Gei(t)) e, (1)Ge(t) + pe, ()G, (t)
it \G., (1)) — (Ge, (1)) '

]

Proof of Proposition 6..1. The claims about <, order follow by direct calculation.
A direct calculation also shows that p®”? is monotone increasing in x in the sense of
<ir, and that PP, is increasing in 2, m and decreasing in 0. So, the claim for x follows.

Indeed, let zy > x9 and let p;(t) = p™™7(t) , i = 1,2, and G,(t) = G**"™(t), i = 1,2

and P> = limy_,o, G;(t). Then, by the monotone likelihood property of the densities, we

have
* [ pu(s) s pi(t) [ s
/t pl(s)ds B /t p2(8) p2( >d = p2(t) /t p2< )d .
Therefore,
nt) _ pi(t) pa(t)
Gi(t) [ pi(s)ds + P [ pa(s)ds + pQZ(D?(gloo
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Thus, to complete the proof, it remains to be shown that
> Pyr. (51)

Because py(t)/p1(t) is decreasing, we have

pa(t) 1;1% 0 J;f" @ s

e o —e o2
pl(t T t—oo pl(t 1 (

and a direct calculation implies that the required inequality (51) is equivalent to the

monotonicity of the function z7! (e® — ™) for x > 0. This follows because

[e.9] 2n

v (e — e
= 2n—|—1

n

Now, for the m parameter, let p,(t) = p®™=7, p.,(t) = p»™7. Then, a direct
calculation shows that p., < pe,. It also follows from the definition of the stopping
time that G, (t) > G, (t) for all t. Indeed, G,,(t) is the probability that a geometric
Brownian motion A{ that starts at Ay does not fall below the barrier Agp < Ay over the

time interval [0,¢]. But since m; > m;, we have
A_Z — AO emjt+oBt Z AO emit+oBt — Ai?

and therefore A7 will always fall below Ap later than A?.

Now, let

— pei(t) o Gei(t)
Y= @ G

Then, our goal is to show that ¢(t) > 0 for all ¢ > 0. We have ¢(0) = 0 and, since ;’:((2
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is increasing, we always have p,, (t) > pe, (t). Furthermore, a direct calculation shows that

4 (Gei(t)) P ()G, (t) = pe, (H)Ge, (1)
dt \Ge,(t)) G2 (1)

€j

and therefore,

Pe;(t)Ge,(t) — pe,(1)Ge,(t) = Ge,(t) (pe,(t) — pe,(t)) = 0.

Finally, the claim for the volatility follows from scale invariance: If 0., = ao,, for some

a > 1, we have
z /a0t m/a

=P

, and the claim follows from the just proven results for the (z,m) parameters. m

The following result is a direct consequence of the above.

Proposition B.2 Suppose that p., = plemi95) - that is, exerting effort level e; leads to

selecting borrowers with parameters (a;,mj,o;). Then, higher effort reduces default risk

if and only if 2 and T2 is monotone increasing in j. In this case, for any j > i, we
o o ) )
J J

have:

(1) If ? > i then pe, <nr Pe,, and there exists a t > 0 such that the likelihood ratio
Fi [

e, (t)/pe, (t) is monotone increasing for t <t and monotone decreasing for t > ¢.%

Thus, higher effort reduces the default hazard rate, but its effect on the likelihood

ratio is ambiguous.

(2) If Zﬁ < 2 then pe, <ir De;, and there exists a threshold t > 0 such that the hazard
rates satisfy he,(t) > he,(t) if and only if t < t. Thus, higher effort reduces the

hazard rate for t < t, but increases it for t > t.

39 F_ (aj/05)*—(ai/a:)?
In fact, t = o 7= (ms Jor )
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Proposition B.3 Suppose that, as in Proposition B.2, p., = p% ™) for some

ag, my, o > 0 and that higher effort reduces default risk. Then, the following is true:
(1) If =2 > for all i, then the optimal contract payments xy(t,Tp1,,)) are
7 7

— decreasing with n; and

— increasing (decreasing) in T, k = 1,---  n for sufficiently small (large) .
(2) If TZ—JJ < 24 for all i then the optimal contract payments Ty (t, T m)) are

— decreasing (increasing) in n for sufficiently small (large) n; and

— increasing in T, k=1,---  n.

Proof of Proposition 4..4. The proof follows directly both from Theorem 4..3

and from the following auxiliary result:

Lemma B.4 For any real numbers ay,--- ,ar, a1, - ,ax € R\ {0}, equation

can have at most K — 1 solutions whereas equation

Z a; et = A (53)

can have at most K solutions for any A # 0.

Proof of Lemma B.4. The proof is by induction. For K = 1, the claim is obvious.
Suppose now that the claim is proven for K = M, and let us show it for K = M + 1.
Suppose, on the contrary, that (52) has at least M + 1 solutions. Then, the same is true

for

>t = —a, (54)



which is impossible because, by the induction hypothesis, it may have at most M solu-

tions. (53) follows directly from Roll Theorem and the above results. m =

C Proof of Theorems 4..1 and 4..3

For simplicity, we only consider the case when the buyer is risk neutral, Az = 0,
and we assume that the effort is binary, e € {ey, e}, and that the investor has all the
bargaining power.

We start with the following important observation.

Lemma C.1 Suppose that the investor is risk neutral (i.e., Ag = 0). If the desired

effort level is not minimal, then at least one of the IC constraints is binding.

Proof. Indeed, if none of the constraints are binding, we get that the contract
payments rates {x,} are deterministic and therefore it is always optimal for the issuer
to exert lowest possible effort. m

In this case, a direct calculation shows that

w(z) = (ug) ™' = —A5' In(1 — Ag2)

and

J(zd) = Ag' (1-271)

is independent of d. Hence, the LL constraint is not binding if and only if

TN Py 4 ) > 1.
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40

We also assume that both IC and IR constraints are binding.”” Denote

Li = Lot (uPytps) > 1-
Then, we are considering the system of equations

<;§1(,u1,,u2) = AgC
Go(p1, o) = As(Ug+C)

with

1 (Ml, M2)

N-1 7 .
H —t
= Tt Thot) Prege, €77 "1 | 1 — dtdr, - --dr
;[/Tk v ko 8) Pheos k( €(T‘7)t(mPk+uz)) ' "
R+

N—1 T
1
H -yt
’ = T,"‘,T,t@vl 1- dtdry - - - dm
o) = 3 [ [ ot om0 (4= g )
R

(56)
Interestingly enough, the only dependence on Ag is through the right-hand sides of (55).
Let us determine the dependence of uq, s on Ag to calculate the limit as Ag — 0. We

have

do(p1,C(p1, As)) = As(Ug+C),

which gives

o UI+C
0As ~ T 9m

Thus, differentiating
(bl(,Uflv C(,Uzl, AS)) = AS C

40This is indeed always true in the risk neutral limit. The general case follows by a modification of
the arguments below.
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we get

041 & Ob2 _ 01 _ [709¢1
[oJ T . ¢ Oz 0Ag <3u2 dpa C—Us dpa
0Ag T 9 o o¢C O¢1 Od2 _ O¢1 02

o1 Oz Oua Op1 Ousg Oz Out

Lemma C.2 Both py, e stay bounded when Ag — 0.

Proof. Because ¢»(p1,0) is monotone increasing in p;, we immediately get that the
solution fi; to ¢a(fi1,0) = Ag(US + C) is monotone increasing in Ag. The same is true
for i and p5. Thus, if only one of the IC or IR constraints is binding, we are done.

Suppose now that both constraints are binding. Because p; € [0, fi1], then p; stays
bounded as Ag — 0. Furthermore, it is straightforward to show that ¢, (1, p2) converges
to a positive number when p; stays bounded and po — oo, and it immediately follows

that uo has to stay bounded when Ag — 0. m
Lemma C.3 For sufficiently small Ag, we have x,, =0 for k > 1.

Proof. By Proposition 3..3, 2, is monotone decreasing with k and therefore max xq(t) >
0 because otherwise the whole payment stream will be identically zero.

Let us now show that max; Agxo(t) — 0 as Ag — 0. For simplicity, we only consider
the case where the IR constraint is binding. The case where only IC is binding is
completely analogous.

Using the inequality

AJt(l—e %) > o

for all z > 0, we get that

N-1 T
Ug’ > Z// d}f(’]‘l,-.. ,Tk;,t) e_”!l'k:(t,T[l,k])dtdﬁ---di
B (57)

T
/ G (8) et (1) dit

v
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where

1
ro = max{0, i log (e (1 Py + p12)) } -

Now, suppose that max; Agzo(t) 4 0. Then, for some ¢ > 0, there exists a sequence
Agpn — 0 such that the corresponding contractual payments satisfy max Ag,zo(t,n) > €.

Because, by Lemma C.2 puy, po stay uniformly bounded, the threshold
To = sup{t >0: x0(t) > 0}

also stays uniformly bounded. Therefore, the maximum location ¢y of xy also stays
uniformly bounded, and so does the derivative of Agxg in (max{0,¢,(0)},T). Let K =

SUDP (max{0.t1(0)}.7) As|70(t)]- Then, for all ¢ € (to,to +¢/(2K)) we have

t
Agzo(t) = Asxo(to)—i—/ Agxy(s)ds > /2.

to

Therefore,

to+e/(2K)
Us > 0.55A§1/ Y&l (t)e dt,

to

which is impossible because the right-hand side converges to +0o when Ag — 0. Thus,

e {1 (e + TmePot) b - 1 5

1#£]
when Ag — 0.
Because zp < 1 < 0, it suffices to show that x; is identically zero for small Ag.

Because Tj stays bounded when Ag — 0, the support of z; is uniformly bounded from

above by some T as Ag — 0. Furthermore, by the argument from the proof of Lemma

B.1,

(GO (1)
Piee =1 (Gej(t)) Pe; (1)
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By continuity and the fact that e; has the highest hazard rate, we have

e (8)G. (T
min inf M =K >1
i (0.T) Pe, (1)Ge, (1)

Furthermore,

min min Py, .. = 6> 0.
vt tel0,T]

We consider two cases.

Case 1. In the limit Ag — 0, min; pc; > € for some € > 0. In this case, because

ppc + ZNIC,i < M
i#£]

, for some M > 0, we get that

e(r—'y)t (MPC + ZNIC,iPO,Ei,EJ‘(t)) S ae(r—’y)t (HfPC + ZHIC,iPO,ei,Ej(t))

i#] i#]

where @ < 1 but sufficiently close to 1 so that
a + ()1 —-a)M < k.

Thus, by (58),

er=t (MPC + ZMIC,1P07€i’61(t)) <1

i#j
for sufficiently small Ag, and the claim follows.
Case 2. Suppose that there is a sequence Ag, — 0 such that the corresponding
tuc,i(n) — 0 for all i. By (58), this immediately yields ppe — 1. Therefore, arguments
of all local maxima (if there are any) of xy(¢) will converge to 0 when n — oco. Thus, all

payments will be concentrated at time zero in the limit; thus, in the limit, the utility
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of the intermediary will be independent of the effort level. This result would mean that
the IC constraints cannot be binding, which is a contradiction. m

To complete the proof, we note that, since Lagrange multipliers stay bounded, we can
always pick a convergent subsequence of those. For this subsequence, it follows from the
above arguments that the contract converges to a sum of delta functions at the locations

of those local maxima of xy for which
elr=t (,UPC + ZﬂIC,iPO@i,ej (t)>
i#]
converges to 1.

Finally, in the binary effort case, we note that it is possible to show that Lagrange

multipliers are monotone decreasing in Ag and therefore converge to finite limits.

D Proof of Theorem 4..5

Here, we prove the following more general statement.

Theorem D.1 Suppose that the effort is binary, default time distributions are from the
Black and Cox model, p., <nr De, and the desired effort level is ey. Then, in the risk
neutral limit, the optimal contract makes a lump sum payment yo > 0 to the intermediary
at time 0, and then a lump sum payment y, > 0 at a time t* if no default occurs before

t = t*. Furthermore:

(1) Suppose that the investor has full bargaining power in designing the contract (mo-

nopolistic case). Then, there exist thresholds Cp |, < Cf , such that:

(i) If Cu < Cpy, we have yo > 0 and t* = t] is independent of Chy.

(i) If C 1 < Cy < C o, we have yo = 0 and t* is monotone increasing in Cg.
(i4) If Cy > Ch 4, we have yo = 0 and t* = tj is independent of Cy.
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(2) Suppose that the intermediary has full bargaining power in designing the contract

(competitive case). Then, there exists a threshold C§ such that:

(i) If Cy < C%, we have yo > 0 and t* =t} is independent of Cy.

(i1) If Cy > C%, we have yo = 0 and t* is monotone increasing in Cy.

Proof. By Theorem 4..3, we know that the optimal contract makes at most two
payments, at time zero and at a time ¢* > 0. Thus, determining the optimal contract is
equivalent to finding the contract in this class, maximizing the utility of the agent who
has full bargaining power.

Because the desired effort level is ey, the IC constraint is binding and therefore we

always have

Y1 = Y<t*)7
where
€’Yt (CH — OL)

Y(i) = ) 59
") = G ) — G, O (59)

Therefore:
Us({dX}, 61') = Yo+ PI‘Ob[Tl > t*|6i] 6_7t* Yy — CZ ( )
60

= Yo+ (Ge,(t)V ey — G
(1) Suppose that the investor has full bargaining power. Then, the investor’s maxi-

mization problem takes the form

(Cy —C1)
1= (G, (1)/Gey (1))

min
t7y0

="t (O — O
(&
{y0+1 (C — Cl) Yo =0, yo+

(G (/G ()Y N2%+@*

Because p., <nr Pey, the quotient (G;ef ((;) is monotone increasing in t; therefore, a direct
calculation shows that
Cyg—-C
U g +Cg < a L (61)

1-— (GSL (t*>/G€H (t*))N)
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is equivalent to

t* <ty,
where t3; = t7} is the unique solution to
* 1/N
Ge, (t3) Ug+Cp

Note that this unique solution only exists if

00 1/N
PeH (Ugv + CH) .
P Ud+Cy,
Otherwise, we set t; = +00. Clearly, t; — 0 as N — oo.
Thus, if ¢ < t};, the optimal choice is clearly yo = 0 and the cost minimization problem
takes the form
el(y=—r)t (Cy —Cr)

T (G (0)/Con ()N (63)

and the minimum is clearly attained at min{t};, ¢} .
If t > t}, yo needs to be positive to satisfy the IR constraint of the seller, and the

optimal choice is clearly

(Cu —CL)
L= (Ge,(t)/Gepy ()N

Yo = Ug—l—CH—

Therefore, the cost minimization problem takes the form

(64)

_ (=)t _
win <U2 + oy + G Cle 2 ) :

L= (Gep (8)/Gey ()Y

and the minimum is clearly attained at max{t},¢;}. The minimal cost is then given by

the minimum of the two quantities (70) and (71).
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Furthermore, a direct calculation shows that

d (Cy — Cp) (et — 1) d e (Cy — )
dt 1— (G, (D) /GEH (t))N T AL — (G, (/G ()Y

and therefore ¢] < . Furthermore, we clearly have tj, {7 — 0as N — oo.

Gey(t) . . . . .
Now, because 7% ((t)) is monotone increasing in ¢, the threshold ¢} is monotone in-
€L

creasing in C'y and ¢ | 0 when Cy | Cp, and t}; converges to +00 when Cy increases.
Therefore, there exist thresholds Cf; < Cf 5 such that ¢ = ¢7 when Cy = Cf; and
=t5 when Cy = Cjg,.

Because the functions

(et )

L= (Gep (1)) Gey ()Y

are monotone decreasing (increasing) for ¢ < ¢f (¢t > tf), i = 0,1, we get that, for

OH < CE,l7

(Cy — Cp) (e — 1)

(Cr — Cu)(eh —1) < U§+CH+1_< (t3)/Gey (L)Y

1= (Ge (1])/Gep (BN T
e(Y—r)th (CH _ CL)
1— (GeL (tB)/GeH (tB))N

U+ Cy +

(65)

hence the contract corresponding to ¢ is optimal.

When Cf, < Cy < Cp,, we have t] < t; < t5 and therefore the quantity (71)
is equal to (70) and the minimum is attained when yo = 0 and ¢ = t};. Finally, when
Cuy > Ck,y, we have t; > i > 17 and therefore the minimum in (71) is still attained
at t = t3;, whereas the maximum in (70) is attained at ¢ = ¢} and is therefore strictly
smaller.

(2) Suppose now that the intermediary has full bargaining power. Then, the same

arguments used in case 1 imply that the maximization problem for the intermediary
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takes the form

(Cy — Cy) . N e(y—mt (Cy —Cy)
1= (Gor(0)/Gey )N T TGy (8) /Gy (1)

max{yo + N = UB({CSn}ﬁH)—U%}

Thus, we are maximizing over the set

{t R ()
1

(G (0/Cn )Y = UB({‘S"}’QH"UB}’

which coincides with a segment [tg, t5] satisfying tg < t% < tg. The optimal yq is always

given by
B O~ (Cy — Oy)
1= (Ge, (1) /Gey (1))

Hence, the maximization problem takes the form

Yo = ~¥ T UB<{5n}v€H)_UJg"

(0" —1) (C — CL))

nax (UB<{5n}7eH>—U% T IS (G (/G )Y

te[ts,zs]

Because t] <t < tg, the maximum is attained at max{t;,tq}. Clearly, ¢t is the minimal

solution to
eyt ~ Up({dn},en) —Up
1= (Gep (1)/Gey ()N Cy—Cp

and is therefore increasing in C'y. Furthermore, tg | 0 as Cy | C and tg — 0 as N — oo.
Therefore, there exists a threshold C§ such that t] >t if and only if Cy < C%, and the
required assertion follows. m

Proof of Proposition 4..9. By definition, ¢} solves

d e

T UT (G (0)/Gun ()N

(v = 1)e0 (L = (Gep (8)/Geyy (D)) = (07 = N (Gey (8)/ Gy ()™ (e (£) = hey (1))

(1= (Gep (1)) Gey (1)) V)
(66)
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Because t] is a local minimum, this derivative changes sign from negative to positive at

t7. Therefore, the same is true for the function

N(heL (t) — heH (t))(l B 67(77T)t)

L (@ (/G )Y — 1)

(t)

and hence ¢/(t7) > 0."!
A direct calculation shows that, for any A > 1, the function (AY — 1)/y is monotone

increasing in y, whereas (1 — A7Y)/y is monotone decreasing in y. Therefore,

99 99

Differentiating the identity ¢(t7) = 0, we get

- _8¢/8N|
ON —  dg/o 1

and the same is true for v — 7.

Similar arguments imply that
e {3 is monotone decreasing in N, Cf, and UJ and is monotone increasing in Cl;

e t} is monotone decreasing in v —7r and V. In particular, the maturity of the optimal

contract is then also decreasing in N and v — r;
e 1. is monotone decreasing in N and is increasing in U3, Cy — Cp, and v — 7.

Finally, t4 < t;; by the arguments given.

The proof is complete. =

“For simplicity we assume that the inequality is strict. This is true for generic parameter values.
The general case can be considered by a small modification of the argument.
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Proposition D.2 Under the hypothesis of Theorem /..5, the total second best surplus
SBy for high effort satisfies the following:

e [n the monopolistic case, the total surplus for the investor is given by

(

FBy — (Cy — CL)¢a(t7) Cy < Cp,y

SBu(N) = {FBy — (0% — 1) (U + Cy) | Cr € [Ch1,Chs)

FBy — ((Cu — Cr)go(t;) — (Ug+Ch)) ,  Cu > Chy.
\
e In the competitive case, the total surplus for the intermediary is given by

SBu(N)
FBH — (CH — CL)¢1(tT) , CH < C;

FBy — ((L—e O )Up({8uhen) = UY) = (U§+C)) . Cu > C5.
(67)

In particular, for C' < min{C% ,, Cs}, the two surpluses are identical.

Proof of Proposition 5..2. We only consider the case Cy < C*. Other cases are
similar.
Because G(t)/Gr(t) < 1, we have that (GL(t)/Gg(t))" is monotone decreasing in

N. Consequently,
ely=mt _y

1= (GL(t)/Gu(t)N

oi(t) =

is also decreasing in N.

Now, fix an ¢ > 0 and let 7 > 0 be such that e"~")7 — 1 < £/2. Then, there exists an
N(7) such that (G(t)/Ggu(t))Y < 0.5 for all N > N(7). Therefore, for all N > N(1),
we have

g/2

miné.(f) < ¢(1) <y = ¢
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and the required assertion follows. m

It follows directly from Proposition B.2 that the following is true.

Proposition D.3 In the Black and Cox setting, suppose that the effort is binary, higher

effort reduces default risk, but my /oy < myp/op. Then,

T[IlI,lj?}S(t xn(t; T[l,n]) = ZL’n<t, (t7 . ,t))

and therefore x,(t; T[lm]) is identically zero for t > t,,, where

e o (- ) ) )

Proposition D.4 (The threshold model) Suppose that

—)\H(t—s) —AL(t—S) )

peL(t) = 1t28)‘H6 7peH(t) = ]-tZS)\L6

Let also

ty =

1 Ul + OH) 1 ( O — )\L)N>
 og (BTEEN o2 o 14 AT AR
Ot — AN Og(Ug+CL O T Dw— AN 8 y—7

Then, the following is true:

and the maturity of the optimal contract is min{ty, t5} in the monopolistic case and

tg in the competitive case.

Proof of Proposition 4..6. It follows directly from the above that the required
assertion holds if and only if #; > 0. The claim thus immediately follows from ¢;(0) =
+00. ®m

Proof of Proposition 4..7. First, it follows by direct calculation that the dis-

tributions are 2-regular and the local maxima can only happen at ¢ = 0 and a single
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positive t*.
(1) Suppose that the investor has full bargaining power. Then, the investor’s maxi-

mization problem takes the form

e(y—m)t (C'H _ CL)

min {y + G 1)
twn |7 1= (Gep(t = 8)/Gey (t = 5))

1= (Gep(t = 5)/Gep(t = 5))

: y0207 y0+

Gey
Ge,

((f)) is monotone increasing in t; therefore, a direct

Because p., <nr Dej, the quotient

calculation shows that

Cu—Cp
Usg+Chy < (68)
° 1= (Ge (1" = 5)/Gep (8 = 8))Y)
is equivalent to
< s+t
where t3; = t7} is the unique solution to
. N
Gey (t5) <U8 + C’H) Y (69)
GEL (t*B) Ug +Cp '

Note that this unique solution only exists if

Py (Ug + CH>1/N |
P U+ Cy,
Otherwise, we set t; = +00. Clearly, t; — 0 as N — oo.

Thus, if ¢ < s+ t}, the optimal choice is clearly yop = 0 and the cost minimization
problem takes the form

. eI (Cyy — Cy)
min )
i<ty 1 — (G, (t — 5)/Ge,, (t — 5))N

(70)
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and the minimum is clearly attained at s 4+ min{t%, ¢} .
If t > t3; + s, yo needs to be positive to satisfy the IR constraint of the seller, and the
optimal choice is clearly

(Cy —C1)
L= (Gep(t —5)/Gepy (t — )N

Yo = U§+CH—

Therefore, the cost minimization problem takes the form

(71)

_ (y=m)t _
min (Ug +Cx + (G — Cu)(e D > )
t>tp+s

L= (Gep (T = 5)/Gey (t = )Y
and the minimum is clearly attained at s + max{t},t;(s)}, where ¢j(s) minimizes

(Cry — Cp)(elrmsel—mt 1)
1= (Ge, (1)/Gep ()Y

over t > 0.

Lemma D.5 We have t5(0) = 0 and t;(s) is monotone increasing in s and converges to
ty as s — oo. Thus, there exists a critical 5 > 0 such that t5(8) = t3; and ti(s) >t} for

all s > 5.

Proof. First, a direct calculation shows that the function (e* — 1)/a is monotone
increasing in a. Indeed, differentiating, we get that this is equivalent to e*(a—1)+1 > 0
which is in turn equivalent to e™® > 1 — a, which follows from the convexity of e~*. This
immediately implies that

e —1 et —1 1—e? e’ —1 a
a —b b 1—e®" b
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for any a,b > 0. Thus,

6(7_T)t — 1 f}/ —7r . e(W_T)t — 1
1— ef(AH*)\L)Nt ()\H — /\L)N o tl0 1— ef(AHf)\L)Nt’

and hence t7(0) = 0. Monotonicity in s follows by the same arguments as above. Finally,

convergence to t follows because

(CH — CL)(Q(W*T)t _ ef(vfr)s)
1= (Gep(t)/Gey (1))N

t] = arg min

and this function converges to ¢o(t) as s — co. m
The minimal cost is then given by the minimum of the two quantities above.

Furthermore, a direct calculation shows that

d (Cyx — Cp)(el=mt+s) 1) d O ) (Cy — Cp)

@t 1= (Gop(D/Cop )Y~ 1= (Goy (8) /Gy (D)

and therefore ¢] < ¢§. Furthermore, we clearly have tj, {7 — 0 as N — oo.

Gey (1)
Gep ()

Now, because is monotone increasing in ¢, the threshold ¢} is monotone in-
creasing in C'y and t3; | 0 when Cy | Cp, and t}; converges to 400 when Cy increases.
Therefore, there exist thresholds C% (s) < Cp, such that t; = t] when Cy = Cp (s)

and {5 = {5 when Cy = Cq,.

Because the functions

(e0rms) _ 5
1= (G, (t)/Gey ()N
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are monotone decreasing (increasing) for ¢t < ¢f (¢t > tf), i = 0,1, we get that, for

CH < CE,1<S)7

(Cy — Cp) (D NU+) — 1) (Cy — Cp)(eDMUB*) — 1)
1- ( er (tT)/GeH(tT)) 1- (GeL (t*B)/GeH (t*B))
(Ch — C1) (Cor = Co) (0= — 1)
1- (GeL(t* )/Gey ()N 1= (Ge, (t5)/Geyy (t5))Y
. 6(7 M(tp+s) (CH—CL)
a 1- (GGL (t*B)/GeH (t*B)) 7

Ud+Cu + < U+ Cq+

(72)
hence the contract corresponding to ¢;(s) is optimal and y > 0.

When Ck, < Oy < C,, we have t{(s) < tp < tj and therefore the quantity (71) is
equal to (70) and the minimum is attained when yy = 0 and ¢t = t}; + s. Finally, when
Cy > Ck,, we have t; > t§ > 1} and therefore the minimum in (71) is still attained
at t = t; + s, whereas the maximum in (70) is attained at ¢ = t§ + s and is therefore
strictly smaller.

(2) Suppose now that the intermediary has full bargaining power. Then, the same
arguments used in case 1 imply that the maximization problem for the intermediary

takes the form

max {?/0 + (CH - CL) .
1_(G€L(t_s>/GeH(t—8))N :
" (Cu — Cu) 0 (73)
W TG (=9)/C t—s)N = Up({0n}. en) —UB}

Thus, we are maximizing over the set

‘- 6(7_7’” (OH — CL)
1—(

Gl Gt < Ulahen ~Uh)
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which coincides with a segment [tg(s), ts(s)] satisfying tg < t;+ s < ts. The optimal y,

is always given by

L e(y—r)t (CH _ CL)
N T (G (t— )Gy (E—5))

N + UB<{5n},6H)—U]g

Hence, the maximization problem takes the form

max (UB<{5n},eH)—U% -

tE[ﬁS ,fs}

(" = 1) (Cu — Cy)
1= (Gep(t = 8)/Gep(t =)
Because tj(s) + s < t5(s) + s < tg, the maximum is attained at max{s + t{(s),t5(s)}.

Clearly, tg — s is the minimal solution to

e(v—r)t _ 67(777')5 UB({(STL}J EH) B U%

L= (Ge (8)/Gey ()Y Cu—Cp

and is therefore t4 — s is monotone decreasing in s, and the existence of the threshold §
follows.

n

Proof of Proposition 4..8.  As above, we need to show that ¢; > 0. To this
end, it suffices to show that ¢, () < ¢§0) for sufficiently small ¢. This follows by direct

calculation from the Taylor formula and the 'Hopital rule. m

E Securitization and equilibrium effort level in the risk neutral

case

The following claim follows by direct calculation
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Lemma E.1 In the risk neutral case, we have

Us({6,},¢;) = Nur™! (1 — (1 - R/u) /Ooo e_”pej(t)dt>

and

Us({6u}, ;) = Nuvy! <1—(1—R/u) /OOO e—vtpej(t)dt) _ ¢

Thus, without securitization, the seller chooses high effort if and only if
Cyg—Cp < 7_1(u—R)N/ e " (Pe, (1) — pe, (1)) dt = C. (74)
0

Lemma E.2 In the risk neutral case, the optimal contract implementing low effort sim-

ply makes a single payment at time 0. This payment is equal to
Us+Cp
when the investor has full bargaining power, and to
Up({0n},eL) — Up

when the intermediary has full bargaining power.

Proof. Because e < e~ for all ¢ > 0, we have

E l/ e"’tht]eL] < FE [/ e”dXt|eL]
0 0
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and the inequality is strict if d.X; is positive for ¢ > 0 with positive probability. In the

case where the investor has full bargaining power, the intermediary’s PC constraint gives

min £ [/ Grtht|€L:| > Uy,
0

dX>0

and in the case where the intermediary has full bargaining power, the investor’s PC

constraint gives

max [ {/ e’ytht‘eL‘| < Up({0n},er) = Up.
0

dX>0
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