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Abstract
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1. Introduction

The disastrous meltdown of the structured securitization market during the 2007-2008

financial crisis has been largely attributed to insufficient regulation and misalignment of

incentives between market participants. Many policy-makers have argued that, under

the “originate-and-distribute” business model, intermediaries did not bear the credit risk

of borrower default, which led to deterioration in the credit quality of the underlying

assets. Several policy proposals have been made to ensure that securitizers have strong

incentives to monitor the quality of the assets they package. Some of these proposals were

ultimately included in the Dodd-Frank Wall Street Reform and Consumer Protection

Act, including a requirement that securitizers retain at least five percent of the default

risk of assets in an asset-backed security (ABS).

Although this five percent retention rule is supposed to ensure that the intermediaries

have “skin in the game,” whether this rule is efficient is not at all clear.1 Furthermore, the

degree of its inefficiency might depend in a very non-trivial way on the precise nature of

the default risk of the securitized assets. The theoretical foundations of the five percent

rule have their origins in the literature on static optimal security design, where it has

been shown that simple retention rules efficiently resolve the problem of informational

asymmetry (see, e.g., DeMarzo and Duffie, 1999; Diamond and Rajan, 2000). However,

this simple rule may fail to take into account of the intrinsic dynamic long-term nature

of ABS default risk. The fact that contractual payments can be conditioned only on

infrequent, discrete default events might completely alter the structure of the optimal

incentive provision. These effects have been essentially ignored in the literature on

optimal security design until a recent paper by Hartman-Glaser, Piskorski, and Tchistyi

1This potential inefficiency has been a topic of extensive discussions by policy makers. Several
improvements have been suggested, such as permitting securitizers to select a form of risk retention
from a menu of options. See, e.g., Luis A. Aguilar, “Speech by SEC Commissioner: Realigning In-
centives in the Securitization Market,” U.S. Securities and Exchange Commission, March 30, 2011,
http://www.sec.gov/news/speech/2011/spch033011laa-item-1.htm
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(2011) (henceforth, HPT (2011)). They were the first to introduce a general framework

for studying optimal securitization of defaultable assets and formalize the major economic

mechanisms that are important for incentive provision. In this paper, we build on the

insights of HPT (2011) and study the following general questions: (1) How can we design

efficient incentive alignment mechanisms taking into account of the dynamic nature of

ABS default risk? (2) How does this optimal design depend on the market conditions

and the nature of the assets underlying the ABS? (3) To what extent are natural market

mechanisms able to induce efficient incentive alignment, and how can regulation improve

these mechanisms? These are the questions we address in this paper.

As in HPT (2011), we consider the problem of dynamic optimal contracting between

an intermediary (the securitizer) and outside investors in the presence of an initial moral

hazard. Given a form of the contractual agreement, the intermediary optimally chooses

the level of costly effort that he exerts initially to screen the assets that will be securi-

tized.2

We use the standard Black and Cox (1976) structural model to model default risk

of any single asset in the securitized basket. In this model, the borrower’s distance to

default is characterized by a stochastic process that fluctuates over time, and the default

occurs when this process falls below a given threshold. This process can be interpreted

as operational cash flows or firm value (when the borrower is a firm), income (when the

borrower is an individual), or house price (in the case of a mortgage). The default risk

of a borrower is then characterized by three directly interpretable economic parameters:

initial distance to default (determined by how much the stochastic process has to fall

for the default to occur), growth rate, and volatility. These three degrees of freedom

allow us to investigate the effects of these three sources of default risk on the structure

2The cost of exerting the effort may be interpreted in two ways: First, it is the direct cost of
carefully monitoring the potential borrowers; second, it is the indirect cost of missing the opportunity to
securitize low-quality (high-risk) assets. This indirect cost may be significantly higher than the simple
direct screening cost.
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of the optimal contract between the intermediary and investors. We characterize the

optimal contract in closed form and show that, under certain circumstances, it can

exhibit surprising patterns such as large payments to the intermediary after a fixed

number of defaults occur one immediately after another (paying for default cascades).3

However, when the desired effort level implements the lowest default hazard rate and the

risk aversion of the market participants is sufficiently small, we show that the optimal

contract exhibits extreme punishment for defaults: It makes positive transfers to the

intermediary only until the time of the first default. In particular, this result shows

that the optimal contract of HPT (2011) is robust and holds even in the presence of

risk aversion, provided the latter is sufficiently small. Furthermore, we also show that

a lumpy contract is optimal in the risk neutral limit, in agreement with the findings of

HPT (2011).

To assess the effect of bargaining power on the optimal contract design, we compare

two polar cases: the competitive case, in which the intermediary has all the bargaining

power in designing the contract, and the monopolistic case, in which the investor has

all the bargaining power in designing the contract. Naturally, we might expect that the

ability to sell all the credit risk “off the balance sheet” reduces the securitizer’s screening

incentives. On the other hand, when investors have all the bargaining power, we might

expect that it would be easier for them to provide correct incentives for the intermediary.

This leads us to formulate the following two conjectures:

Conjecture 1. Securitization leads to lax screening if the securitizer has all the

bargaining power.

Conjecture 2. The optimal screening effort when the securitizer has all the bar-

gaining power is lower than the optimal screening effort when the investor has all the

bargaining power.

3As we discuss in the main text, this contract structure has the undesirable feature of being quite
vulnerable to manipulation by the intermediary.
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Surprisingly, our analytical results indicate that the following statements are true:

• Conjecture 1 never holds when risk aversions of both agents are sufficiently small.

In this case, securitization always improves the intermediary’s screening incentives,

independent of who has the bargaining power.

• Conjecture 2 generally does not hold. In fact, we show that, when risk aversions

are small, the equilibrium effort level of the intermediary does not depend on the

bargaining power allocation. Reducing the severity of the moral hazard problem

through pooling is always in the best interest of the intermediary; pooling allows

the intermediary to achieve surplus extraction, which is arbitrarily close to the first

best. Furthermore, for some parameter values, the equilibrium effort level will be

higher when the intermediary designs the contract than when the investor designs

the contract.

The economic intuition behind these surprising findings comes from the fact that,

in our model: (i) The effort is priced (because investors have rational expectations and

correctly anticipate the intermediary’s optimal effort level for any given contract); and

(ii) the cost of additional effort (relative to the no securitization case) is always less than

the discount imposed due to the fact that the effort is priced. Part (i) is clear: Indeed,

even if the intermediary designs a contract that leaves it with a minimal exposure to the

underlying default risk, investors know that, with such contract form, the intermediary

will optimally choose a low effort. Therefore, investors will demand a high premium

for the increased default risk. Part (ii) is not at all obvious and is driven by the risk

neutrality of the market participants and the relative impatience of the intermediary.

Indeed, if all market participants are risk neutral and the investor discounts future cash

flows at a higher rate than the intermediary, the incremental benefit of effort is always
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greater for the investor than for the intermediary.4

This premium effectively reduces the intermediary’s cost of effort and might make

exerting a higher effort optimal. When investors have all the bargaining power, providing

incentives for the intermediary to reduce the overall default risk certainly is in their

interest. However, the effective cost that investors have to pay for this incentive provision

might be higher in some circumstances than the effective effort cost reduction when the

securitizer has all the bargaining power. In this case, the equilibrium effort level in the

competitive case is higher than that in the case of a monopolistic investor.

When agents are risk neutral, we show that, surprisingly, the optimal contracts in

the two polar cases differ only in the payment they make at time zero. In particular, the

equilibrium effort level is independent of the bargaining power allocation and converges to

the first best level when the number of securitized assets is sufficiently large. Increasing

the minimal number of assets in the securitized pool always improves incentives and

facilitates surplus extraction.

Our results have potential implications for securitization practices and regulation. In

contrast to the conventional wisdom, we argue that securitization may improve incentives

and therefore increase overall welfare of the society. This can happen even in situations

when intermediaries are completely unregulated and have full bargaining power. We be-

lieve that properly designed securitization contracts may significantly reduce the “lemons

spread”5 and therefore improve the efficiency of these ABS markets. Finally, we note

that, in our model, we make an implicit assumption that no information about asset

4The presence of risk aversion may potentially change the effect of securitization. For example,
consider a model in which the intermediary is risk averse and the investor is risk neutral, and effort only
reduces riskiness of cash flows, but does not change their present value. Since effort is costly and the
investor is risk neutral, any efficient contract will implement the lowest effort. However, in the absence
of securitization, it will always be optimal for the intermediary to exert effort if the cost of effort is not
too high. We thank an anonymous referee for suggesting with this very illustrative example.

5See, e.g. Downing, Jaffee and Wallace (2009) who find that this spread accounts for up to 45% of
the overall prepayment spread of mortgage-backed securities.
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quality is verifiable. Under this assumption, credit rating agencies are essentially redun-

dant and the degree of the credit risk of an ABS is determined solely by the structure of

the corresponding contract and can therefore be directly inferred by rational investors.

By contrast, if a credit rating agency could provide credible information about the asset

quality, default contingent contracts may become unnecessary. The relative efficiency

of the two different mechanisms depends on how costly it is for the rating agencies to

verify the information, relative to how costly it is to provide incentives through default

contingent contracts. Nevertheless, introducing optimal contracts into standard securi-

tization practices would reduce the role of ratings in securitization, which is particularly

important given the obvious failure of rating agencies to provide credible information

during (and before) the crisis (Bolton, Freixas, and Shapiro, 2011).

We discuss the related literature in the following paragraphs.

Several empirical papers study the effect of misaligned incentives on the ABS market

during the 2007-2008 crisis. Mian and Sufi (2009) find evidence that the extraordinary

subprime mortgage growth from 2002 to 2005 was driven by a sharp rise in securitization,

and they further suggest that the moral hazard associated with securitization might have

caused the high mortgage default rates during that period and contributed to the global

financial crisis. Keys, Mukherjee, Seru, and Vig (2010) exploit a specific rule of thumb

in the mortgage lending market to examine whether the securitization process reduces

the incentives of financial intermediaries to screen borrowers carefully, and their results

suggest that existing securitization practices adversely affected the screening incentives

of subprime lenders. Using comprehensive sales data of mortgage-backed securities from

1991 through 2002, Downing, Jaffee, and Wallace (2009) also show that securitized assets

are of low quality with unfavorable performance. Thus, all three papers find empirical

support for Conjecture 1 above. The discrepancy between our theoretical predictions

and the empirical evidences can be explained by two factors: (1) Investors in the ABS
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market were not sophisticated enough (i.e., did not have rational expectations) to fully

understand the intermediaries’ incentives issue; and (2) the contracts used in the industry

were far from being optimal or efficient in any sense. As we discuss above, resolving these

two issues might significantly improve the functionality of the securitization market.

Ashcraft and Schuermann (2009), Fender and Mitchell (2009), and Kane (2009) pro-

vide a detailed discussion of the chain of incentive conflicts that led to the subprime

mortgage crisis. Minton, Stulz and Williamson (2009) and Stulz (2010) study how the

adverse effect of the use of credit derivatives on lender’s incentives contributed to the

financial crisis.6 In particular, Stulz (2010, p.90) argues that: “Rather than blaming

derivatives markets, such as the credit default swap market, for being too large, it might

make as much sense to regret that derivatives markets were not larger.” We believe that

our theoretical results strongly support this argument. Larger, more efficient, and bet-

ter designed markets for securitizing and sharing credit risk might significantly improve

social welfare.7

Our paper is also clearly related to theoretical literature on optimal security design.

One large strand of this literature studies static optimal security design in the presence

of asymmetric information. DeMarzo and Duffie (1999) develop a model in which the

issuer has private information about the future payoff and signals a high-value security

by its willingness to retain a portion of the issue. They study the problem of ex ante

security design: The issuer designs the security before obtaining a signal about its value.

DeMarzo and Duffie show that, under certain conditions, the optimal ex ante security

design is a standard debt. DeMarzo (2005) studies whether pooling and tranching is

optimal for an informed security issuer. Biais and Mariotti (2004) extend the Duffie

6See also Partnoy and Skeel (2006) for a pre-crisis warning.

7Of course, strict regulation of the credit risk exposure of market participants participating in true
sale transactions is necessary for efficient incentive alignment. For example, according to the Dodd-Frank
Act, a securitizer is prohibited from evading the risk retention requirements by hedging or transferring
the credit risk that they are required to retain.
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and DeMarzo (1999) model and study how securities and issuance mechanisms can be

designed to mitigate the adverse effect of market imperfections on liquidity. They study

separately the competitive case and the monopolistic case, just as we do in our model.

Gorton and Pennachi (1990) and Boot and Thakor (1993) show that, when both

informed and uninformed investors are present in the market, it is optimal to split the

asset into two securities: one senior and less information-sensitive security, and one

junior and more information-sensitive security. Fulghieri and Lukin (2001) and Axelson

(2007) study the security design problem that arises when outside investors have private

information about the firm. Each of these papers, however, assumes that the unknown

quality of the underlying assets is exogenous and is not affected by the effort of the seller;

therefore, risk retention in these models is a signaling device. In contrast, investors in

our model rationally anticipate the quality of the assets for any given contract. Thus,

asymmetric information is present ex-ante because of moral hazard, but it is absent

ex-post. This distinction is also true in the one-period optimal contracting problem

with moral hazard, studied by Innes (1990). Another large strand of the literature is

motivated by spanning risks. For surveys, see Allen and Gale (1994) and Duffie and Rahi

(1995).

Substantial literature addresses dynamic optimal contracting with a repeated moral

hazard, in which an agent makes a choice about effort in every period, and the cur-

rent effort choice affects only the current outcome. See DeMarzo and Sannikov (2006),

DeMarzo and Fishman (2007), and Sannikov (2008) for this stream of literature. In

contrast, the moral hazard problem in our paper is persistent: A single action of the

securitizer at time zero determines the probability distribution of all future cash flows.

Furthermore, the nature of information flow in our model is very unique because new

information arrives only at default events.

The closest to our work is the recent paper by Hartman-Glaser, Piskorski, and
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Tchistyi (2011), which is the first paper to derive an optimal securitization contract

in a dynamic setting. Their analysis generates new insights regarding the dynamic na-

ture of the contracting problem and their optimal contract takes a an elegant and simple

form: It makes a single payment to the intermediary after a waiting period if default

occurs during this period. The derivation of this result in HPT (2011) is based on the

following assumptions: (1) both the intermediary and the investor are risk neutral; (2)

default times are exponentially distributed; and (3) it is optimal for the investors to

provide incentives for the intermediary to exert the highest effort level. We show that

the result of HPT (2011) is robust and holds in more general settings, up to small mod-

ifications. Namely, assuming that the risk aversions of both agents are sufficiently small

and that higher effort leads to a lower default hazard rate, we show that the optimal

contract is characterized by multiple waiting periods, where the intermediary gets par-

tially remunerated for the absence of defaults during every subsequent waiting period.

This result is very general and holds for a large class of default time distributions and

multiple effort levels. As an application, we use the benchmark Black and Cox (1976)

model to study how different sources of default risk interact and how they affect the form

of the optimal contract.

2. Model Setup

We consider a continuous time optimal contracting problem between two agents: an

intermediary S (the seller) and an outside investor B (the buyer). At time t = 0, the

intermediary creates a pool of N defaultable assets (e.g., issues loans or mortgages, or

acquires defaultable bonds) and sells this pool to the investor. The quality of the assets in

the pool depends on the intermediary’s unobservable (and hence non-contractible) costly

effort e that can take a finite number of values, e ∈ {e1, · · · , eK} with e1 < · · · < eK .

The direct utility cost of exerting effort level ej is equal to Cj , j = 1, · · · , K . In the
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case of a binary effort (K = 2), we write e ∈ {eL, eH}, where eL corresponds to low effort

and eH to high effort.

As in HPT (2011), we assume that, conditional on the effort level ej, exerted by the

intermediary at time 0, the random default times {T1, · · · , TN} of the N assets in the

pool are independent and identically distributed8 with the cumulative distribution and

the survival functions given by:

Fej(t) ≡ Prob[Ti < t | ej] and Gej(t) ≡ Prob[Ti ≥ t | ej] = 1− Fej(t) (1)

for all i ∈ {1, · · · , K}. Consistent with intuition, we say that an effort reduces default

risk if it reduces the probability of default of any given asset i over any given time horizon

[0, t]. Everywhere in the sequel, we make the following assumption:

Assumption. We assume that higher effort reduces default risk—that is Fej(t) is

monotone decreasing in j ∈ {1, · · · , K} for any t ≥ 0. Furthermore, we assume that

Fej(t) has a strictly positive, continuous density pej(t) for any j ∈ {1, · · · , K}.

For simplicity, we assume that each securitized asset i = 1, · · · , N is a defaultable

bond (e.g., loan, mortgage, etc.) paying a fixed coupon rate u until the the default occurs

at time Ti, and a recovery coupon rate R < u after the default.9 Let Dt denote the total

number of defaults that have occurred up to time t. Then, because individual default

times are i.i.d., the information set of the investor and the intermediary coincides with

8We do not analyze correlated defaults and the effects of systemic risk on the shape of the optimal
contract. These effects may be important both for securitization of consumer loans and mortgages,
where default risk is directly related to home prices, and for securitization of defaultable bonds, where
defaults may be frailty-correlated. See Duffie, Eckner, Horel, and Saita (2009). Our methods can be
directly extended to this more general setting, and we leave it as a topic for future research.

9It would be more realistic to assume that the bond holder gets a lump sum payment ρ u/r, equal
to the value of the bond, multiplied by the recovery rate ρ. By picking R = ρu, we get that the present
value of the bond after default is equal to ρu/r, and the two assumptions thus are equivalent if the agents
can invest the recovery payment into a risk-free bond. We make the continuous payment assumption
for technical reasons because the agents are maximizing utility from continuous consumption.

10



the filtration Ft generated by the process Dt. Let

τn = inf{t > 0 : Dt ≥ n}

be the stopping time of the n-th default, and we set τ0 = 0. Then, the total payment

rate dt of the pool is given by the stochastic process:

dt = (N −Dt)u + DtR =
N∑

n=0

δn 1t∈[τn,τn+1)

where

δn = (N − n)u + nR . (2)

A securitization contract specifies a transfer schedule from the investor to the interme-

diary, contingent on the history of defaults. Namely, the schedule is given by a sequence

of payment rates {xn(t, τ[1,n]), n ≥ 0} specifying the rate xn ≥ 0 (limited liability for

the intermediary) that the investor transfers to the intermediary at the instant of time t

after exactly n defaults have occurred, conditional on their occurrence times τ1, · · · , τn.

Both the intermediary (agent S) and the investor (agent B) are risk averse,10 and they

maximize the discounted intertemporal expected utilities uS and uB from their life-time

consumption, discounted at the rates γ and r respectively. As is common in the lit-

erature on dynamic optimal contracting, we assume that the intermediary is relatively

impatient–that is, γ > r .11

For each i = S,B the utility function ui is assumed to be strictly increasing and

concave; it is defined on an interval (`i,+∞) for some `i ∈ [−∞, 0) and satisfies the

10Later on, we consider the risk neutral limit case when the risk aversions of both agents converge to
zero.

11See, e.g., DeMarzo and Duffie (1999), DeMarzo and Sannikov (2006), and HPT (2011). This as-
sumption is typically justified as a preference for cash or for additional investment opportunities by the
agent (intermediary), as in DeMarzo and Duffie (1999).
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standard Inada conditions

lim
c↓`i

u′i(c) = +∞ , lim
c→+∞

u′i(c) = 0 .

The utility of the intermediary from entering the contract {xn} after exerting an effort

ej is given by12

US({xn}, ej) ≡ E

[∫ ∞

0

e−γ t uS(xDt(t, τ[1,Dt])) dt | ej
]

− Cj (3)

and the corresponding utility of the investor is given by:

UB({xn}, ej) ≡ E

[∫ ∞

0

e−r t uB(dt − xDt(t, τ[1,Dt])) dt | ej
]
. (4)

We can now formulate the optimal contracting problem and describe efficient allocations,

corresponding to the two polar cases: the competitive case, in which the intermediary

has all the bargaining power in designing the contract, and the monopolistic case, in

which the investor has all the bargaining power in designing the contract.

Following the lines of HPT (2011)13, we make the following definition.

Definition 2..1 An efficient allocation is a quadruple (Ũ0
B, Ũ

0
S, {xn}, ej) consisting of

• a contract {xn} with xn ≥ 0 for all n ≥ 0;

• an effort level ej;

• the utility Ũ0
S ≡ US({xn}, ej) for the seller after entering the contract;

12The assumption that the agent (intermediary) derives utility from the continuous flow of consump-
tion, offered by the principal (investor) is standard in the optimal contracting literature. See, e.g.,
Sannikov (2008).

13See, HPT (2011), Definition 1. We thank an anonymous referee for suggesting this form of definition.
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• the utility Ũ0
B ≡ UB({δn − xn}, ej) of the buyer after entering the contract,

where the pair ({xn}, ej) fulfills the optimality condition

Ũ0
B = max

{(yn,ek)}
UB({δn − yn}, ek) (I)

where the maximization is over all contract-effort pairs ({yn}, ek) satisfying the limited li-

ability (LL), incentive compatibility (IC) and the intermediary’s participation constraints

(PC):

yn ≥ 0 for all n ≥ 0, (LL)

ej = argmax
ek

US({yn}, ek), (IC)

US({yn}, ek) ≥ Ũ0
S . (PC)

This definition describes the entire Pareto frontier of contracting outcomes. Denote by E

the set of efficient allocations. In this paper we will study two particular efficient alloca-

tions, corresponding to extreme bargaining power allocations. Namely, the monopolistic

investor case and the competitive investor case.

• The equilibrium in the monopolistic case corresponds to the efficient allocation for

which14

Ũ0
B = max{U : (U, Ũ0

S, {xn}, ej) ∈ E for some {xn}, ej and Ũ0
S ≥ U0

S}

• the equilibrium in the competitive case corresponds to the efficient allocation with

14Interestingly enough, as HPT (2011) show, (PC) does not bind in the monopolistic case if the outside
option U0

S is sufficiently small.
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Ũ0
B = U0

B that maximizes Ũ0
S. That is,

15

Ũ0
S = max{U : (U0

B, U, {xn}, ej) ∈ E for some {xn}, ej} .

As is common in the literature, we will solve the optimal contracting problem in two

steps: First, find the the optimal contract, implementing any given effort level; second,

find the optimal (equilibrium) effort level.

3. The Optimal Contract for a Given Effort Level

In this section, we fix an effort level ej, characterize the optimal contract implementing

this effort level, and study its properties.

By definition, the stopping times τ1 < · · · < τN coincide with the order statistics of

the individual default times T1, · · · , TN . In particular, τ1 = min{Tk, k = 1, · · · , N} and

τN = max{Tk, k = 1, · · · , N}. We will denote by f
ej
k (τ[1,k]) the joint density of

τ[1,k] ≡ (τ1, · · · , τk), k ≤ N

conditional on the effort level ej.
16

Fix an effort level ej. Denote by Probej [τk+1 > t|τk] the probability that the (k + 1)-

th default occurs not earlier than at time t ≥ τk.
17 Since the intermediary receives

xk(t, τ[1,k]) only if (k + 1)-th default occurs not earlier than at time t ≥ τk, for the time

period between the k-th and the (k+ 1)-th default events, the gain for the intermediary

15It may happen that there are multiple efficient allocations corresponding to Ũ0
B = U0

B .

16Lemma A.1 in the Appendix provides an explicit expression for this density.

17It is possible to show that Probej [τk+1 > t|τk] =
(Gej

(t))N−k

(Gej
(τk))N−k .
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from exerting effort level ej relative to another effort level ei is given by

E

[∫ τk+1

τk

uS(xk(t, τ[1,k])) dt
∣∣ ej]− E

[∫ τk+1

τk

uS(xk(t, τ[1,k])) dt
∣∣ ei]

=

∫
Rk

∫ ∞

τk

f
ej
k (τ[1,k]) Prob

ej [τk+1 > t|τk] e−γt uS(xk(t, τ[1,k]))

× Pk,ei,ej(t; τ[1,k])︸ ︷︷ ︸
1 net the relative likelihood of receiving xk(t,τ[1,k])

dt dτ[1,k] ,

(5)

where we have set18

Pk,ei,ej(t; τ[1,k]) ≡ 1 − Probei [τk+1 > t|τk] f ei
k (τ1, · · · , τk)

Probej [τk+1 > t|τk] f
ej
k (τ1, · · · , τk)

= 1 − pei(τ1) · · · pei(τk)(Gei(t))
N−k

pej(τ1) · · · pej(τk)(Gej(t))
N−k

.

(6)

The quantity Pk,ei,ej will play a fundamental role in the structure of the optimal contract.

From the intermediary’s point of view, Pk,ei,ej determines the likelihood of receiving the

cash flows xk(t, τ[1,k]) at time t under the effort ej, relative to that under the effort ei.

From the investor’s point of view, Pk,ei,ej is equal to 1 minus the likelihood of the event

that the intermediary exerted effort ei relative to the effort level ej, given that the first k

defaults occur at times τ1, · · · , τk and the next default occurs no earlier than at time t.

Formula (5) implies that the effect of the (IC) constraints on the structure of the optimal

contract is completely determined by the nature of the functions Pk,ei,ej .

Since both (IC) and (PC) will enter the first order conditions with the corresponding

Lagrange multipliers {µIC, µPC}, we will also need the following definition:

Ψk(t, τ[1,k]; {µIC, µPC}) ≡ µPC +
∑
i6=j

µIC,iPk,ei,ej(t, τ[1,k]) . (7)

Finally, we will call a contract strictly incentive and participation constraint compatible

18See Appendix for a derivation of this expression.
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if both (IC) and (PC) hold with strict inequalities. We can now describe the optimal

contract implementing a given effort level j.

Theorem 3..1 Fix an effort level ej, j > 1 and suppose that the set of strictly incentive

and participation constraint compatible contracts, implementing the effort level ej is non-

empty. Then, there exist Lagrange multipliers µPC ≥ 0 , µIC,i ≥ 0, i 6= j, such that the

optimal contract {xk(t, τ[1,k]) , k = 0, · · · , N} satisfies

e−rtu′B(δk − xk)

e−γtu′S(xk)
= Ψk(t, τ[1,k]; {µIC, µPC}) (8)

if

Ψk(t, τ[1,k]; {µIC, µPC}) ≥
e−rtu′B(δk)

e−γtu′S(0)
(9)

and xk = 0 otherwise.

Furthermore, the contract has a finite maturity: There exists a T̄ > 0 such that

xk(t, τ[1,k]) = 0 for all t ≥ T̄ and all k ≥ 0.

The nature of the optimal contract is determined by the interaction of three forces:

(i) (IC) constraints, driven by the dynamics of Pk,ei,ej ; (ii) benefits of paying the interme-

diary early, driven by the impatience wedge (γ > r); and (iii) risk sharing.19 Intuitively,

the contract incentivizes the intermediary by decreasing payments proportionally to the

likelihood 1 − Pk,ei,ej(t, τ[1,k]) of a deviation from the desired level of effort ej to an al-

ternative effort ei. The strength of these incentives is characterized by the size of the

corresponding Lagrange multiplier µIC,i. At the optimum, the ratio of the discounted

marginal loss for the investor, e−rtu′B(δk − xk), and the discounted marginal benefit for

the intermediary, e−γtu′S(xk), in any given state is proportional to a linear combination

19Note that, without moral hazard and the impatience wedge (i.e., µIC,i = 0 and γ = r), perfect
risk-sharing is achieved.
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of these likelihoods, given by Ψk, provided that the signal of no deviation to any alterna-

tives of the seller implied by this state is sufficiently strong. If the signal of no deviation

is not strong enough, (i.e., when (9) is violated), (LL) constraint binds and the optimal

payments are reduced to zero.

To gain a deeper understanding of the optimal dynamic incentive provision mecha-

nism, we need to investigate properties of the functions Pk,ei,ej(t, τ[1,k]). Recall that the

quantity

hej(t) =
pej(t)

Gej(t)
. (10)

is commonly referred to as the default hazard rate. We need the following definition:

Definition 3..2 We say that an effort level ej leads to a lower default hazard rate than

the effort level ei if hej(t) ≤ hei(t) for all t ≥ 0.20 In this case we say that pej dominates

pei in the hazard rate order, and we write pei �hr pej . Furthermore, we write pei ≺hr pej

if the strict inequality hej(t) < hei(t) holds for all t. Finally, we say that pej dominates

pei in the likelihood ratio order if pej(t)/pei(t) is monotone increasing in t. In this case

we write pei ≺lr pej .

We can now state the following result.

Proposition 3..3 The following is true

• If pei �hr pej , then Pk,ei,ej(t, τ[1,k]) is monotone decreasing with k and hence, so is

xk(t, τ[1,k]) if pei �hr pej for all i 6= j.

• If pei ≺lr pej (pej ≺lr pei), then Pk,ei,ej(t, τ[1,k]) is monotone increasing (decreasing)

in default times τ[1,n] and hence, so is xn(t, τ[1,n]) if pei ≺lr pej (pej ≺lr pei) for all

i 6= j.

20If a default time distribution has a lower hazard rate, it clearly also has a lower default risk.
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The results of Proposition 3..3 are very intuitive. Indeed, if a default time distribution

has a lower hazard rate, then for every time instant, the probability of default’s happening

instantaneously is smaller. Therefore, fewer defaults should occur over any given period

of time. Hence, Pk,ei,ej(t, τ[1,k]) is decreasing with k and, consequently, it is optimal to

punish the intermediary for every new default. The likelihood ratio property is also very

intuitive: It means that the likelihood of the effort ej relative to the effort ei is monotone

increasing with the time of default and hence, so is Pk,ei,ej(t, τ[1,k]). In other words, the

later the default takes place, the higher is the likelihood of the effort ej. This property

naturally makes punishing the intermediary for early defaults optimal. As an illustration,

note that in the HPT (2011) model, we have peH (t) = λL e
−λLt , peL(t) = λH e

−λH t with

λL < λH , and therefore both hazard rate and likelihood ratio properties hold: We have

λL = heH (t) < heL(t) = λH and peL(t) ≺lr peH (t) .

4. The risk neutral limit

It is important to note that the simple form of the optimal contract is based on the

assumption that the investor is able to control the intermediary’s consumption, or, equiv-

alently, that the intermediary cannot privately save. The introduction of private savings

may significantly alter the optimal contract when the risk aversion of the intermediary is

not too small. Indeed, in this case, the intermediary may undo incentives using private

savings to smooth consumption. However, introducing private savings makes the opti-

mal contracting problem significantly more complicated and investigating this important

problem is beyond the scope of this paper. For this reason, everywhere in the sequel we

will assume that the risk aversion of both market participants is sufficiently small.21 It

turns out that, when the desired effort level implements the lowest default hazard rate

21This is a natural assumption in a constant absolute risk aversion (CARA) setting. For example, an
absolute risk aversion of 10−9 corresponds to a relative risk aversion of one for an agent with a billion
dollar capital.
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and the risk aversion of the market participants is sufficiently small, the optimal contract

exhibits extreme punishment for defaults: It makes positive transfers to the intermediary

only until the time of the first default. Namely, the following is true:

Theorem 4..1 Suppose that pej has the lowest hazard rate and both agents have expo-

nential (CARA) preferences

uS(x) = A−1
S (1− e−ASx) , uB(x) = A−1

B (1− e−ABx) .

Then, if AB, AS are sufficiently small and AB/AS is not too large, the optimal contract

{xk} implementing effort ej has xk ≡ 0 for all k ≥ 1.

The intuition behind this result is based on Proposition 3..3: When the desired effort

level leads to the lowest hazard rate, Pk,ei,ej is monotone decreasing with k and hence,

so is xk(t, τ[1,k]). Therefore, the optimal contract always makes the largest transfers to

the intermediary in the period [0, τ1] before the first default occurs. When agents are

sufficiently close to being risk neutral, concentrating all payments in this time interval

is optimal because the compensation that the intermediary requires for taking the risk

of early defaults is sufficiently small.

To continue the analysis of the risk-neutral limit, we need to impose additional tech-

nical conditions.

Definition 4..2 We say that default time distributions are k-regular if the function

e−(γ−r)tΨ0(t; {µIC, µPC}), defined in (7), has at most k local maxima for t ∈ [0,+∞)

for any Lagrange multipliers µPC ≥ 0 , µIC,i ≥ 0, i 6= j.

The following is true:
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Theorem 4..3 Under the hypothesis of Theorem 4..1, suppose that default time distri-

butions are k-regular. Then, if AB, AS → 0 so that AB/AS stays bounded, any contract

in the limit set is of the following form:22

There exists a κ ∈ {0, · · · , k − 1}, an increasing sequence of time instants 0 ≤ t0 <

· · · < tκ < ∞23 and a sequence yi ∈ R+, i = 0, · · · , κ , such that the optimal schedule of

transfers to the intermediary is given by

κ∑
i=0

1t=ti 1ti<τ1 yi .

To understand the intuition behind the optimal contract of Theorem 4..3, note that

when both agents are risk neutral, the most efficient way to provide incentives for a given

effort level is to concentrate all the contract’s payments in the time instants with the

highest likelihood of the desired effort level24. When the effort level ej leads to the lowest

default hazard rate, these likelihood-maximizing time instants ti, i = 0, · · · , κ always

belong to the time proceeding the first default, as we show in Theorem 4..1; the number

κ of these instants is bounded from above by k, the maximal number of local maxima of

the weighted likelihood. The sizes yi of the corresponding payments are determined by

the severity of the corresponding IC constraints. This contract structure can also be well

understood from the tradeoff between learning and impatience. Clearly, investors would

like to postpone payments so that they can learn more from observing a longer history of

defaults. However, delaying payments is costly because of the relative impatience of the

22Formally, it means that, for any sequence of risk aversions converging to zero, we can pick a sub-
sequence such that the corresponding contracts converge to a contract of the from described in the
theorem. If there is a unique optimal contract in the risk neutral limit, then the convergence takes place
in the standard sense.

23It follows from the proof in the Appendix that there exist Lagrange multipliers µPC ≥ 0 , µIC,i ≥
0, i 6= j such that ti is a local maximum of e−(γ−r)tΨ0(t; {µIC, µPC}) and e−(γ−r)tΨ0(ti; {µIC, µPC}) = 1
for all i = 0, · · · , κ. This observation can be used directly to determine ti.

24With multiple effort levels, the “highest likelihood of the desired effort” should be interpreted as
“highest

∑
i 6=j µIC,iPk,ei,ej (t, τ[1,k]).”
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intermediary. This leads to an optimal incentive provision mechanism characterized by

multiple waiting periods: The intermediary gets partially remunerated for the absence of

defaults during every subsequent waiting period [ti, ti+1). So, if no default occurs until

t = t0, the intermediary receives the first payment y0 and enters a waiting phase (t0, t1].

If no default occurs until t = t1, the intermediary receives the next payment y1, etc.,

until either the last payment gets paid at time tκ, or a default occurs, in which case the

intermediary loses all subsequent payments.

It is important to relate our main results (Theorems 4..1 and 4..3) to those of HPT

(2011). Namely, HPT (2011) obtains a special case of Theorem 4..1, assuming from the

beginning that (1) both agents are risk neutral (without taking the limit AS, AB → 0);

(2) the effort choice is binary; and (3) default time distributions are exponential. In

this case, it is possible to show that peL ≺hr peH , and the default distributions are 1-

regular, so that the optimal contract is characterized by a single payment after a single

waiting period. Being the first of its kind, the result of HPT (2011) is important for

understanding the nature of optimal incentive provisions for securitization. In particular,

HPT (2011) identify two key economic forces that determine the shape of the optimal

contract: (1) the investor wants to pay the intermediary as soon as possible to exploit

the impatience wedge and (2) an interaction between the limited liability and incentive

compatibility constraints creates value for information “quality”. Information quality

improves over time and therefore the timing of payments is a major incentive provision

mechanism.

Theorems 4..1 and 4..3 show that the same economic intuition still holds in a more

general setting and the results of HPT (2011) are robust. Namely, Theorem 4..1 shows

that extreme punishment for defaults, a property of the optimal contract that HPT

(2011) obtained in the risk neutral setting, is robust to small perturbations to risk neu-

trality so long as higher effort leads to lower hazard rates. Theorem 4..3 shows that a
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lumpy contract is optimal in the risk neutral limit, as in HPT (2011); the only differ-

ence is that multiple payment dates may arise. For example, when default distributions

are exponential, it is possible to show that they are (K − 1)-regular, with K being the

number of possible effort levels. Therefore, the following is true.

Proposition 4..4 Suppose that pei(t) = λi e
−λi t for all i = 1, · · · , K, with λ1 > · · · >

λK . Then, default time distributions are (K − 1)-regular, and therefore the result of

Theorem 4..3 holds with k = K − 1.

The fact that multiple waiting periods are optimal in the multiple effort case is quite

intuitive: Each payment date prevents the intermediary from deviating to the corre-

sponding alternative effort level. Namely, the shortest waiting period (0, t0) incentivizes

the intermediary to exert an effort higher than e1, the second payment (at time t1)

provides incentives to exert an effort higher than e2, etc.

Theorem 4..3 can be used to explicitly calculate the optimal payments yi, as well

as the optimal payment times ti, for any number of possible effort levels. However,

for simplicity, everywhere in this section we confine ourselves to the binary effort case.

Furthermore, we will often assume that the default time distributions come from the

Black and Cox (1976) structural default model.25 Namely, we assume that

pej(t) =
aj√

2π σj t3/2
e
−

(mjt+aj)
2

2σ2
j
t , j = H, L (11)

for some aj,mj, σj > 0. In this case, it is possible to show26 that peL ≺hr peH if and only

if aH
σH

> aL
σL

and mHaH
σ2
H

> mLaL
σ2
L
. Define

φ1(t) ≡ (e(γ−r)t − 1)

1− (GeL(t)/GeH (t))
N

and t∗1 ≡ argmin
t≥0

φ1(t) . (12)

25See Section 6. for a detailed discussion of this model.

26See Proposition B.2 in the Appendix.

22



The following is true:

Theorem 4..5 Suppose that the effort is binary, default time distributions are from the

Black and Cox model, peL ≺hr peH , and that the desired effort level is eH . Then, in

the risk-neutral limit, the optimal contract makes a lump sum payment y0 ≥ 0 to the

intermediary at time 0, and then a lump sum payment y1 > 0 at a time t∗ > 0 if

no default occurs before t = t∗. Furthermore, there exists a threshold C∗ such that for

CH < C∗, we have:

t∗ = t∗1 , y1 =
eγt

∗
1 (CH − CL)

(GeH (t
∗
1))

N − (GeL(t
∗
1))

N
,

and y0 > 0.

Figure 1 provides an illustration for the convergence result of Theorem 4..5.

Insert Figure 1 Here

A very important consequence of Theorem 4..5 is the optimality of a strictly positive

payment to the intermediary at time zero when the cost of effort is not too high.27

To understand the intuition behind this result, recall that the structure of the optimal

contract is determined by optimal tradeoff between waiting for better information (in

order to reduce the cost of incentive provision) and paying the intermediary early in order

to exploit the impatience wedge between the intermediary and the investor. This tradeoff

is determined by the dynamics of the functions Pk,eL,eH and e−(γ−r)tΨk, representing the

“discounted value of incentives”. By Theorem 4..1, extreme punishment for defaults is

27Our numerical results indicate that the condition CH < C∗ of Theorem 4..5 is absolutely non-
restrictive. In fact, the threshold C∗ is so high (higher than the total value of the assets in the pool)
that the inequality CH < C∗ holds for any reasonable parameter values. For the sake of completeness,
the case of very high effort cost (i.e., CH > C∗) is considered in the Appendix.
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optimal and we can confine ourselves to the case k = 0, with

e−(γ−r)t Ψ0(t) = e−(γ−r)t (µPC + µIC P0,eL,eH (t)) ,

and

P0,eL,eH (t) = 1 −
(
GeL(t)

GeH (t)

)N

.

If higher effort reduces default hazard rate, the function P0,eL,eH (t) is monotone increas-

ing with t. The derivative

S(t) ≡ d

dt
P0,eL,eH (t) (13)

can therefore be interpreted as the speed of information arrival. If the investor and the

intermediary are equally patient, it is always optimal to wait for more information and

indefinitely postpone payments to the intermediary. However, when γ > r, waiting is

costly and the interplay between the size γ − r of the impatience wedge and the speed

of information arrival determines the optimal timing of payments to the intermediary.

Clearly, when the effort cost CH is sufficiently high, incentive provision is very costly and

only a very large delayed payment can satisfy the (IC) constraint. The (PC) constraint

is then satisfied automatically. In contrast, when CH is sufficiently small, the moral

hazard problem is mild and even a small delayed payment is sufficient to provide the

necessary incentives. In this case, a positive initial payment y0 may be the optimal way

to satisfy the (PC) of the intermediary. One very intuitive sufficient condition is that

the speed of information revelation is zero at time zero. Indeed, in this case it may take

a long time for better information to arrive and paying the intermediary immediately is

optimal. This intuition is formalized in the following proposition

Proposition 4..6 Suppose that higher effort reduces default hazard rate, the densities

peH (t), peL(t) are continuous for small t, and the optimal contract is of the form described
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in Theorem 4..5. If

S(0) = 0 ,

then there exists a threshold C∗ such that optimal the payment y0 is strictly positive for

all CH < C∗.

As an illustration of this result, let us consider the following modification of the HPT

(2011) model: Suppose that there exists an s > 0 such that no default occurs until time

s.28 That is,

peH = 1t≥s λL e
−λL(t−s) , peL = 1t≥s λH e

−λH(t−s) (14)

for some λH > λL > 0. Then, it is possible to show that the optimal contract for this

model has the form, characterized in Theorem 4..5. However, since no information is

revealed up to time s, we ought to have t∗ > s. When the delay s is sufficiently large,

the impatience wedge makes a positive initial payment optimal. The following is true.

Proposition 4..7 Suppose that the default time distributions are given by (14). Then,

the optimal contract has the form, described in Theorem 4..5 with some y0(s), y1(s), t
∗(s).

Furthermore, if the cost of effort satisfies

CH < CL + (U0
S + CL)

(λH − λL)N

γ − r
, (15)

then, there exists a s̄ > 0 such that y0(s) > 0 if and only if s > s̄. By contrast, if (15) is

violated then y0 = 0 for all s > 0.

When the speed of information revelation is non-zero at time zero, the situation

is more subtle. What matters then is not only the speed S(t) (see (13)) of information

arrival, but also the rate at which S(t) is changing. Suppose that the speed of information

28We thank an anonymous referee for suggesting this very nice example.
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arrival is monotone increasing with time. Then, if the rate at which the speed is increasing

is sufficiently large (larger than the impatience wedge γ − r), it is optimal to delay the

payments further and wait until even “better” information starts arriving. In this case,

it may be optimal to make a small payment to the intermediary at time zero and then

wait until the speed starts increasing really fast, and only then make the next payment.

The following is true.

Proposition 4..8 Suppose that higher effort reduces default hazard rate, the densities

peH (t), peL(t) are continuously differentiable for small t, and the optimal contract is of

the form, described in Theorem 4..5. If S(0) > 0 and

d
dt
S(t)
S(t)

∣∣∣
t=0

> γ − r

then there exists a threshold C∗ > 0 such that the optimal payment y0 is strictly positive

if and only if CH < C∗.

As an example, consider the HPT (2011) model. Then,

d

dt
S(t) = −((λH − λL)N)2 e−(λH−λL)Nt < 0,

and therefore the speed of information arrival is decreasing over time and Proposition

4..8 is not applicable. As HPT (2011) show, y0 is always equal to zero in this case.

The following proposition provides some useful comparative statics results about the

maturity t∗ of the optimal contract and the optimal payment y1.

Proposition 4..9 Under the hypothesis of Theorem 4..5, the maturity t∗ = t∗1 of the

optimal contract is always monotone decreasing in N and γ − r and is increasing in the

size of default risk under high effort. The payment y1 is increasing in γ−r, and decreasing
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in N and in the size of default risk under high effort. Furthermore, t∗ converges to 0 as

N → ∞.

Intuitively, maturity t∗ and the size y1 of the delayed payment are determined by the

severity of the moral hazard problem and the conflict of interest between the investors

and the intermediary. If exerting high effort only marginally decreases default risk,

the moral hazard problem is severe and the optimal waiting period is long. When the

intermediary is relatively impatient, delaying payments is costly for the investor, making

it optimal to reduce the waiting period [0, t∗). To compensate for this cost and to improve

incentives, delayed payment y1 has to be made larger. Finally, the fact that the maturity

t∗ is decreasing with N is justified by the information enhancement effect of pooling,

emphasized in HPT (2011): When N is large, investors can learn much faster about the

intermediary’s effort, simplifying the problem of optimal incentive provision.

The elegant characterization of the optimal contract in the risk-neutral limit, provided

in Theorem 4..3, critically depends on the assumption that the desired effort level imple-

ments the lowest default hazard rate. When this assumption is violated, Theorem 4..1

does not hold in general and extreme punishment for defaults might not be optimal. Con-

sequently, in the risk-neutral limit, the optimal contract might make positive payments

to the intermediary even after a few defaults have occurred. In our benchmark model

with binary effort and Black and Cox default time distributions, Proposition B.2 implies

that high effort does not lead to a lower hazard rate if and only if mH/σH < mL/σL.

In this case, for a large t, the default hazard rate heL(t) under low effort is significantly

lower than the rate given a high effort, and the results of Theorems 4..1 and 4..3 do not

hold in general. The following is true:

Theorem 4..10 Suppose that the effort is binary, default time distributions are gener-

ated from the Black and Cox model, and mH/σH < mL/σL. Suppose also that γ − r is

sufficiently small. Then:
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• Conditional on observing n defaults, maximal transfers to the intermediary happen

when these defaults take place immediately one after another, and we have

ϕk(t) ≡ max
τ[1,k]≤t

xk(t; τ[1,k]) = xk(t; (t, t, · · · , t)) ;

• The maximum of ϕk(t) over t is monotone increasing in the number n of defaults;

and

• There exist n∗ > 0 and t∗ > 0 such that, in the limit as AS, AB → 0 so that

AB/AS stays bounded, the contract only makes transfers to the intermediary when

n∗ defaults occur at time instants, sufficiently close to τ ∗, and with one immediately

after another.

As we have explained, in the case when both agents are risk neutral, the optimal

incentive alignment mechanism can be implemented by concentrating payments in the

state that maximizes the likelihood of a high effort level; however, the timing of transfers

has to be adjusted for the relative impatience of the intermediary (γ > r). Because the

desired effort level does not implement the minimal hazard rate, Pk,eL,eH (t, τ[1,k]) increases

with the number k of defaults when t is sufficiently large. When the intermediary is

sufficiently impatient, postponing payments into the future is too costly for the investor,

and the optimal contract will take the same form as in Theorem 4..1. However, when

γ is sufficiently close to r, waiting for a few defaults to occur (namely, n∗ defaults in

Theorem 4..10) is optimal, and the contract takes the form described. We refer to this

type of payment as paying for default cascades.

It should be pointed out that the optimal contract, described in Theorem 4..10 has

a very unattractive feature of being highly vulnerable to default manipulation by the

intermediary. Indeed, if the payment is only made to the intermediary following a cas-

cade of defaults, the intermediary has strong incentives to collude with the borrowers
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and arrange that they default at the “optimal” time. This sensitivity to intermediary

manipulation is more troubling than that to investor manipulation since intermediaries

typically have direct access to borrowers.29

5. Securitization and the optimal effort level

In this section, we use our explicit expressions for the optimal contract in the risk-

neutral case to study the effect of securitization on the equilibrium effort choice. For

simplicity, we assume that the effort is binary (i.e., e ∈ {eH , eL}), and the effort costs

are proportional to the number of assets in the pool (i.e., Cj = N cj , j = H,L for some

cL, cH > 0). The outside option of the intermediary is simply retaining the initially

created asset pool (the “originate-and-retain” model), that is,

U0
S = max

j
US({δn}, ej) ,

and the outside option of the investor is zero: U0
B = 0.

In the absence of moral hazard, the agent who has the bargaining power can extract

full surplus from the counterparty. In our case, this first best surplus (conditional on a

given effort level ej) is equal to

FBj(N) = UB({δn}, ej)− (U0
S + Cj) = N · FBj(1) (16)

and is proportional to the number of assets in the pool.

We start with the following simple observation: Because the intermediary is relatively

impatient (γ > r), providing incentives is costly. Therefore, the most efficient way to

implement low effort is simply to make a single payment at time zero. This is formalized

29We thank an anonymous referee for this important observation.
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in the following proposition.

Proposition 5..1 In the risk-neutral case, the optimal contract for implementing low

effort is to pay the intermediary a fixed lump sum at time zero. Furthermore, we have:

• In the competitive case, this lump sum equals UB({δn}, eL) (full surplus extraction

by the intermediary).

• In the monopolistic case, the lump sum equals U0
S + CL (full surplus extraction by

the investor).

In particular, total surplus coincides with FBL.

In the high effort case, (IC) constraint always limits the set of contracts and reduces

total surplus.30 HPT (2011) show that pooling has an information enhancement effect:

Increasing the number of securitized assets simplifies the problem of incentive provision

and makes it less costly. The following proposition shows that, in fact, the total surplus

loss vanishes in the limit when the number of securitized assets becomes large.

Proposition 5..2 Under the hypothesis of Theorem 4..5, the total second best surplus

SBH for high effort is independent of bargaining power allocation and is given by:

SBH(N) = N (FBH(1)− (cH − cL)φ1(t
∗
1)) . (17)

The total surplus loss per asset (FBH(N) − SBH(N))/N is monotone decreasing in the

number N of assets and converges to zero as N → ∞.

Now we are ready to discuss the optimal effort choice in the presence of securitization.

Because γ > r, the increase in the pool value resulting from a higher screening effort is

30IC constraint always binds for the optimal contract implementing high effort. Indeed, if it does not
bind and the investor is risk neutral, the optimal contract makes deterministic payments independent
of the default history, in which case the intermediary optimally chooses a low effort.
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always higher for the investor than for the intermediary; that is,

UB({δn}, eH) − UB({δn}, eL) > US({δn}, eH) − US({δn}, eL) . (18)

By (16), the optimal effort level is high in the first best case if and only if

UB({δn}, eH) − UB({δn}, eL) > CH − CL . (19)

Indeed, if the cost of effort is higher than the increase in the market value of the pool, it

will never be optimal for market participants to choose high effort. Because the second

best surplus is always lower than the first best one, condition (19) is also necessary

for high effort to be optimal in the second best case. Combining this observation with

Proposition 5..2, we arrive at the following result.

Proposition 5..3 In the presence of securitization, the equilibrium effort level is eH if

and only if the following is true:

UB({δn}, eH) − UB({δn}, eL) ≥ (1 + φ1(t
∗
1))(CH − CL) . (20)

Consequently:

• If (19) does not hold, then the equilibrium effort level is eL, both with and without

securitization and independent of bargaining power allocation.

• If (19) holds, then there exists an N∗ ≥ 1 such that the equilibrium effort level

is eH if and only if N ≥ N∗. In particular, for sufficiently large N, securitization

always improves the equilibrium screening effort.

Proposition 5..3 has direct implications for regulating securitization. Imposing a lower

bound on the number of assets in the securitized pool and using the correct incentive
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provision mechanisms might significantly improve an intermediary’s screening incentives.

To provide a better understanding of this effect, we state the following proposition.

Proposition 5..4 Consider a 1-parameter family of distributions G(t, α), such that G(t, α)

is continuous and increases in α in the hazard rate order. Suppose that Gej(t) =

G(t, αj), j = H,L. Fix the parameter αL. Then, there exist thresholds α > α in (αL,+∞)

such that:

• Without securitization, the intermediary chooses high effort if and only if αH > ᾱ;

and

• In the first best case, the investor chooses a contract implementing high effort of

the intermediary if and only if αH > α; and

• For all αH ∈ (α, α), there exists a threshold N∗(αH) such that the equilibrium

effort level is high if and only if N > N∗(aH). Consequently, for all αH ∈ (α, α),

securitization strictly improves the equilibrium screening effort if and only if N >

N∗(αH).

Figure 2 illustrates how the minimal number N∗ of assets in the pool depends on

various model parameters. For example, we can see that, even when screening increases

the distance to default by 30% (from aL = 0.2 to aH = 0.27), the intermediary will

choose a low effort without securitization, whereas, with just a few hundred assets in the

pool, securitization makes a high effort optimal even for aH = 0.23.

Insert Figure 2 Here

6. The Black and Cox Default Time Distributions

In this section, we provide a detailed analysis of a special case of our general model

in which the default times are generated by the Black and Cox (1976) structural default
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model.31 In this model, the borrower defaults when a given stochastic process Xt falls

below a given threshold XB. This process can be interpreted as the operational cash

flows (when the borrower is a firm) or income (when the borrower is an individual), or

the house price (for the case of a mortgage). The process Xt is assumed to follow a

geometric Brownian motion, with the drift µ and volatility σ,

dXt = Xt (µ dt + σ dBt) ,

where Bt is a standard Brownian motion. We assume that Xt is non-observable for the

outside investors. This is definitely true in the case of consumer loans or mortgages, and

it is usually justified in the literature by incomplete accounting information for the case

when the borrower is a firm (Duffie and Lando, 2001). Although the intermediary might

have some information about Xt for t > 0, we assume for simplicity that this information

is non-contractible and that the contractual payments can only be conditioned on the

default history.32 The probability distribution of the default time τXB , the first time Xt

falls below XB, is given by

Prob[τXB < t] = F a,m,σ(t) ≡ 1 − Φ

(
mt+ a

σ
√
t

)
+ e

−2ma

σ2 Φ

(
mt− a

σ
√
t

)
, (21)

which has the density

pa,m,σ(t) =
a√

2π σ t3/2
e−

(mt+a)2

2σ2t (22)

with

m = µ− 0.5σ2 , a = log(X0/XB) > 0 .

31The Black and Cox (1976) model has now become a benchmark for calculating default probabilities.
See Duffie and Singleton (2003) for a detailed analysis and applications.

32For example, this information may be soft and difficult to transmit to outside investors. Alterna-
tively, if the number N of assets in the pool is large, monitoring all of them is extremely costly for
outside investors.

33



Here,

Φ(x) ≡ 1√
2π

∫ x

−∞
e−y2/2dy

is the cumulative distribution function (CDF) of a standard normal distribution. For

simplicity, we always assume that the (risk adjusted) growth rate m is positive for all

borrowers (i.e., m > 0). A very important property of Black and Cox default time

distributions it that they are defective: There is a strictly positive probability P a,m,σ
∞

that the borrower will never default. Namely,

Prob[τXB = ∞] = P a,m,σ
∞ ≡ 1 − e−

2ma
σ2 . (23)

This defectiveness is a very important economic phenomenon that appears in any model

in which there is growth: When the stochastic distance to default, log(Xt/XB), is grow-

ing with positive probability, the borrower might never default. As we will show, this

property is responsible for several surprising features of the optimal contract.

The following proposition characterizes the dependence of pa,m,σ on the parameters

(a,m, σ).

Proposition 6..1 The density pa,m,σ is

(1) increasing in a,m and decreasing in σ in the sense of ≺hr order;

(2) increasing in a in the sense of the ≺lr order;

(3) decreasing in m with respect to the ≺lr order; and

(4) neither increasing nor decreasing in σ with respect to the ≺lr order.

Property (1) is very intuitive: Clearly, a borrower with a higher initial distance to

default a, a higher growth rate m, or a lower volatility σ will default with a lower
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probability at every instant. Property (2) is also to be expected: Because borrowers that

have higher initial capital default later, on average, the likelihood of the borrowers having

higher initial capital should be monotone increasing in the time of default. However,

property (3) is counterintuitive and surprising: It means that the later a default occurs,

the higher is the likelihood that the borrower has a low cash flow growth rate. The

reason is that the density pa,m,σ is defective. A borrower who has a higher m, also has a

higher probability of never defaulting. However, conditional on the event that a default

occurs in finite time, it happens earlier, on average, for a borrower with a higher growth

rate m.

In the Black and Cox setting described above, the intermediary’s screening effort has

a very clear meaning: He can screen the borrowers for their initial distance to default a,

their growth rate µ, and their volatility σ. We assume that, conditional on an effort level

ej, all borrowers in the pool have the same parameters (aj,mj, σj).
33 Although the actual

screening procedure implemented by banks is more complicated and relies to a significant

degree on soft information that is difficult to quantify, the three parameters (a,m, σ) have

a very clear economic meaning and can be directly related to observable quantities. The

parameter a can be clearly associated with the borrower’s initial creditworthiness and

is therefore the easiest to estimate. The cash flow volatility σ can also be estimated if

a sufficient amount of past income/cash flow/house price data is available. The growth

rate parameter m is the most difficult one to estimate empirically. However, it is possible

to use observable information to get some rough idea about its magnitude. For example,

for consumer loans, information on education level and past employment and associated

income growth can be used to provide information about µ. In the case of commercial

loans for a real estate company, rental income and length of leases could be used to

33Alternatively, we might assume that the parameters (aj ,mj , σj) are themselves random and are
sampled from a probability distribution, determined by the effort level. Our analysis can be easily
extended to this more general setting.
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estimate µ. However, even if a higher screening effort decreases default risk, it does not

necessarily lead to an increase in both a, m and a decrease in the volatility σ. The

following proposition describes the effect of screening potential borrowers on the basis of

a, m and σ on the default time distribution.

Combining Proposition 6..1 with Proposition 3..3, we get that the optimal contract

might exhibit several surprising features:

(1) If the intermediary is able to select borrowers with higher growth, then the optimal

payments are decreasing with the number of defaults. However, when defaults

occur after a sufficiently long time period, the optimal contract exhibits punishment

for late defaults: The intermediary will be payed less if the defaults occur too late;

(2) If the intermediary selects borrowers with high initial distance to default but with

low growth, the optimal contract will exhibit punishment for too few defaults:

Payments to the intermediary will increase with the number of defaults when these

defaults occur sufficiently late. Nevertheless, after a fixed number n of defaults is

observed, the intermediary will be paid more if these defaults occurred late.

Indeed, selecting borrowers with a higher growth rate increases the probability that

the defaults will never occur. However, if the defaults do occur, they should happen early.

Therefore, contracts that punish for late defaults is an efficient way to provide correct

incentives. The same intuition applies to item (2): If the cohort of borrowers selected

with the desired effort level is supposed to have lower growth rates, the corresponding

default hazard rates would be higher for sufficiently large t. Therefore, defaults will tend

to be more concentrated, and the optimal contract punishes the intermediary for too few

defaults.
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7. Conclusion

The recent turmoil in the asset-backed securitization market has led regulators and

market participants to reflect upon the role of misaligned incentives in disrupting the

efficient functioning of both financial and real sectors of the economy. Given the im-

portant benefits of securitization, including better risk sharing and a reduced cost of

capital for the intermediary (see, e.g., Pennacchi, 1988), a properly organized securitiza-

tion market might significantly improve society’s welfare. However, natural asymmetric

information and moral hazard problems between intermediaries and investors can lead

to serious dysfunctionality and illiquidity in these markets. The collapse of highly rated

structured finance products in 2007-2008 has obviously shown that credit ratings failed

to resolve these important problems. Therefore, new mechanisms need to be developed,

providing intermediaries with better incentives for monitoring the credit risk of securi-

tized assets. Although new regulatory requirements (e.g., 5% retention rule) introduced

in the Dodd-Frank Wall Street Reform and Consumer Protection Act are aimed at im-

proving intermediaries’ incentives, their efficiency may be highly sensitive to a particular

economic environment.

In this paper, we study how efficient incentive alignment mechanisms can be designed

to (partially) resolve the problem of incentive alignment in the securitization market. We

show that the structure of optimal securitization contracts depends in a very non-trivial

way on the nature of the underlying credit risk. In stark contrast to the conventional

wisdom, we find that securitization improves the intermediary’s monitoring incentives,

even when the intermediary has full bargaining power in designing the optimal contract.

The reason is that, when investors are sufficiently sophisticated (fully rational), they cor-

rectly anticipate the intermediaries’ monitoring effort and optimally respond to this level

of effort by requiring a higher credit risk premium. This endogenous incentive provision

mechanism naturally improves intermediaries’ incentives and leads to more efficient risk
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allocation. Despite its being abstract and theoretical, our model has many realistic fea-

tures: It allows us to take into account of risk aversion of all market participants, as well

as for various sources of the credit risk of the assets collateralizing a structured prod-

uct. We believe that future research, introducing more realistic market features (e.g.,

regulatory constraints, macroeconomic risk, hedging and saving for both investors and

intermediaries), may lead to contracts that can eventually become an industry standard.

Incorporating systemic risk (e.g., risks of recessions or stochastic depreciation in home

prices) is another important direction in which our results can be extended. For example,

in addition to determining the average default risk of the securitized assets, intermedi-

ary’s effort might also affect the amount of systemic risk in the securitized portfolio.

This may potentially lead to systemic crises, as in Farhi and Tirole (2010), and one can

study efficient ways of preventing these welfare-decreasing outcomes.
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Figure 1: Convergence to the lump sum payments (Theorem 4..1) at t∗1 ≈ 11 months
as the intermediary’s risk aversion AS goes to zero. The unit of horizontal axis is one
year. Parameter values: AB = 0, r = 5%, γ = 10%, C = (2%) Nu

r
, N = 100, R/u =

50%, u = 1, (aH , µH , σH) = (0.4, 0.04, 0.1), (aL, µL, σL) = (0.2, 0.04, 0.1) (Growth rate
and volatility are taken on a yearly basis.)
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Figure 2: Illustration for Proposition 5..4. Parameter values: AB = AS =
0, r = 5%, γ = 10%, 8%, 6%, C = 2% Nu

r
, R/u = 50%, u = 1, (aL, µL, σL) =

(0.2, 0.04, 0.1), (aH , µH , σH) = (0.2, 0.04, 0.1) (except for the varying parameter).
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Appendix

A Proof of Theorem 3..1

This section is devoted to a proof of Theorem 3..1. For the reader’s convenience, we

first provide a brief outline of the main arguments.

• To preserve concavity of the problem, it is useful to make a change of variables

from the optimal payments xk to the utility rate uS(xk) that the seller derives from

these payments. The reason is that, with this change of variables, the participation

constraints and incentive compatibility constraints become linear and the problem

can therefore be tackled by standard convex programming techniques. In particu-

lar, we start with Lemma A.2 and express the risk sharing rule using the changed

variables.

• Lemma A.3 derive an expression for the seller’s utility.

• We then use standard duality results (Lemma A.4) to prove existence (and unique-

ness) of the optimal contract.

• Finally, in subsection A.1, we derive fully explicit necessary and sufficient con-

ditions for the existence of the optimal contract for the case when the effort is

binary.

The following lemma provides an explicit expression for the joint density of (τ1, · · · , τN).

Lemma A.1 The joint density of (τ1, · · · , τk), k ≤ N conditional on the effort level ej

is given by

f
ej
k (τ1, · · · , τk) = 1τ1<···<τk

N !

(N − k)!
pej(τ1) · · · pej(τk) (Gej(τk))

N−k . (24)
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See David and Nagaraja (2003).

We will also need an auxiliary result to characterize the nature of risk sharing between

the intermediary and the investor.

Lemma A.2 Let w(x) = (uS)
−1(x). Then there exists a unique solution J(x; d) to the

equation

u′B
(
d − w(J(x; d))

)
w′(J(x; d)) = x . (25)

Note also that w′(x) = 1
u′
S(w(x))

.

Lemma A.3 The seller’s expected utility from the payment of xk(t, τ[1,k]), conditional

on effort e, is given by

∫
Rk+1

ψe
k(τ1, · · · , τk, t) e−γt uS(xk(t, τ[1,k])) dτ1 · · · dτk dt (26)

where

ψe
k(τ1, · · · , τk, t)

def
=

N !

(N − k)!
1τ1≤···≤τk≤tpe(τ1) · · · pe(τk) (Ge(t))

N−k . (27)

Proof. The proof is not completely straightforward because we must attend to the

fact that the probability density may be defective:

lim
t→∞

Ge(t) = P∞
e ≥ 0.

We have

P [τk+1 ∈ dt|τ1, · · · , τk] =
f e
k+1(τ1, · · · , τk, t)dt
fk(τ1, · · · , τk)

= (N − k)
pe(t) (Ge(t))

N−k−1

(Ge(τk))N−k
dt
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and therefore, using the identity

∫ ∞

t

pe(τk+1) (Ge(τk+1))
N−k−1 dτk+1 =

(Ge(t))
N−k − (P∞

e )N−k

N − k
, (28)

we get that

P [τk+1 = +∞|τ1, · · · , τk] = 1 −
∫ +∞

τk

(N − k)
pe(t) (Ge(t))

N−k−1

(Ge(τk))N−k
dt =

(P∞
e )N−k

(Ge(τk))N−k
.

Therefore, using (28) once again and changing the order of integration, we get:

∫
Rk+1
+

f e
k(τ1, · · · , τk) (N − k)

pe(τk+1) (Ge(τk+1))
N−k−1

(Ge(τk))N−k

×
∫ τk+1

τk

e−γt uS(xk(t, τ[1,k]))dt dτ1 · · · dτk+1

=

∫
Rk

f e
k(τ1, · · · , τk)

∫ +∞

τk

e−γt uS(xk(t, τ[1,k]))
(Ge(t))

N−k − (P∞
e )N−k

(Ge(τk))N−k
dt dτ1 · · · dτk

(29)

Therefore, the seller’s expected utility from the payment of xk(t, τ[1,k]), conditional on

effort e, is

∫
Rk

f e
k(τ1, · · · , τk)

∫ +∞

τk

e−γt uS(xk(t, τ[1,k]))
(Ge(t))

N−k − (P∞
e )N−k

(Ge(τk))N−k
dt dτ1 · · · dτk

+

∫
Rk
+

f e
k(τ1, · · · , τk)

(P∞
e )N−k

(Ge(τk))N−k

∫ +∞

τk

e−γt uS(xk(t, τ[1,k]))dt dτ1 · · · dτk

=

∫
Rk+1

ψe
k(τ1, · · · , τk, t) e−γt uS(xk(t, τ[1,k])) dt dτ1 · · · dτk ,

(30)

where we have used the identity

ψe
k(τ1, · · · , τk, t) = f e

k(τ1, · · · , τk)
(Ge(t))

N−k

(Ge(τk))N−k
. (31)
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Recall that the utility rate of the seller from the contract {xn} is:

vk(t) = uS (xk(t)) (32)

and

w(z) = (uS)
−1(z) (33)

is the inverse of the seller’s utility.

We only study the monopolistic case, the other case is analogous. We will use the

standard duality approach. Namely, we can introduce the dual function

ũ(µIC, µPC) = max
{xn}≥0

{
UB({δn − xn}, ej)

+
∑
i 6=j

µi,IC (US({xn}, ej)− US({xn}, ei)) + µPC(US({xn}, ej)− U0
S)
} (34)

Then, using the same change of variable (to the utility rate) as above, we can transform

the optimization problem over {xn} into a concave one, and it follows that the maximum

is attained at

xn(t, τ[1,n]; {µIC, µPC}) = 1In w
(
J
(
Ψn(t, τ[1,n]; {µIC, µPC}) ; δn

))
. (35)

The following result follows by standard duality arguments (see, e.g., Kramkov and

Schachermayer (1999)):

Lemma A.4 The function ũ(µIC, µPC) is convex. Suppose that it attains a global mini-

mum over RK+1
+ at a point {µ∗

IC, µ
∗
PC}.

Then, the corresponding contract xn(t, τ[1,n]; {µ∗
IC, µ

∗
PC}) is an optimal contract.

Thus, in order to prove existence of the optimal contract, it suffices to show that the

function ũ(µIC, µPC) does attain a minimum. By standard compactness arguments, it
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suffices to show that ũ(µIC, µPC) converges to +∞ as {µIC, µPC} → ∞. Indeed, pick

a sequence {µIC, µ
l
PC} → ∞ converging to infinity. Then, passing to a subsequence if

necessary, we may assume that either (a) there exists a k > 0 such that µl
k,IC → +∞

as l → ∞ or (b) µl
PC → ∞ as l → ∞. By (34), choosing a sub-optimal contract

{xn} always gives a lower bound for ũ. Let {x̄n} be a contract that is strictly incen-

tive and participation constraint compatible (the set of such contracts in non-empty by

assumption). Then, we have

ũ(µl
IC, µ

l
PC) ≥

{
UB({δn − x̄n}, ej)

+
∑
i6=j

µi,IC (US({x̄n}, ej)− US({x̄n}, ei)) − µPC(US({x̄n}, ej)− U0
S)
}

≥ UB({δn − x̄n}, ej) + µl
k,IC(US({x̄n}, ej)− US({x̄n}, ek))

+ µl
PC(US({x̄n}, ej)− U0

S) → +∞

(36)

as l → ∞, and the claim follows.

A.1 The Binary Effort Case: Precise conditions for Existence of the Optimal

Contract

In the general case of multiple effort levels, we prove existence of an optimal contract

assuming that the set of strongly incentive- and participation-constraints compatible

contracts is non-empty. In this subsection, we consider the case of a binary effort e ∈

{eH , eL} and derive fully explicit necessary and sufficient conditions for the existence of

the optimal contract. We consider the contract implementing high effort level eH and we

use sub(super)-scripts H and L instead of eH and eL unless otherwise stated. We also

denote Pk = Pk,eL,eH .

Let us first consider the case when the buyer has full bargaining power in designing
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the contract. The problem for the buyer can then be written as:34

max
{vk}k=0,···N : vk≥uS(0)

N−1∑
k=0

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)e−rtuB

(
δk − w(vk(t, τ[1,k]))

)
dt dτ1 · · · dτk

under the incentive compatibility (IC) constraint

N−1∑
k=0

∫
Rk+1
+

(ψH
k − ψL

k )(τ1, · · · , τk, t)e−γ tvk(t, τ[1,k])dt dτ1 · · · dτk ≥ C

with C ≡ CH − CL and under the individual rationality (participation) constraint

N−1∑
k=0

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)e−γ tvk(t, τ[1,k])dt dτ1 · · · dτk ≥ U0

S + CH

for the seller. Clearly, we can rewrite the IC constraint as

N−1∑
k=0

∫
Rk+1
+

ψH
k Pk,ei,ej (τ1, · · · , τk, t)e−γ tvk(t, τ[1,k])dt dτ1 · · · dτk ≥ CH

Denoting the Lagrange multipliers for the two constraints by µ1 and µ2, the first order

condition for vk takes the form

−e−rtu′B (δk − w(vk))w
′ (vk) + µ1e

−γtPk + µ2e
−γt = 0

when the limited liability constraint (LL), vk ≥ uS(0), is not binding and vk = uS(0)

34Here, {vk ≥ uS(0)} is the transformed limited liability constraint.
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otherwise.35 Thus,

xk(t, τ[1,k], µ1, µ2) = max
{
0, w

(
J
((
e(r−γ)t(µ1Pk + µ2)

)
; δk
))}

.

Define

gk(µ1, µ2) =

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)Pk e

−γ tuS(xk(t, τ[1,k], µ1, µ2))dt dτ1 · · · dτk

hk(µ1, µ2) =

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t) e−γ tuS(xk(t, τ[1,k], µ1, µ2))dt dτ1 · · · dτk

(37)

and

F1(µ1, µ2) =
N−1∑
k=0

gk(µ1, µ2) − C

F2(µ1, µ2) =
N−1∑
k=0

hk(µ1, µ2) − CH − U0
S .

(38)

Here, as above, C = CH − CL.

Lemma A.5 We have

F1(0, µ2) = −C < 0

for any µ2 ≥ 0 and

F2(0, 0) = γ−1 uS(0)− U0
S − CH < 0.

Proof. Indeed, F1(µ1, µ2) + C is the difference between the seller’s utilities from

the contractual payments, conditional on high and low effort respectively. But because

µ1 = 0, the payments are deterministic and do not depend on the stochastic process of

defaults, this difference is zero.

35Standard duality arguments imply that these necessary conditions are also sufficient. See Kramkov
and Schachermayer (1999).
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The last claim follows because, for µ1 = µ2 = 0, the payments to the intermediary

are identically zero.

Lemma A.6 We have limx→∞ J(x; d) = uS(d− `B) and limx→0 J(x; d) = uS(`S).

Proof. By assumption, w satisfies w′(uS(+∞)) = ∞ and w′(uS(`S)) = 0. Therefore,

lim
J→uS(d−`B)

u′B(d− w(J))w′(J) = +∞

and

lim
J→uS(`S)

u′B(d− w(J))w′(J) = 0.

The following lemma is a straightforward application of the monotone convergence

theorem.

Lemma A.7 Let Jmax = limx→+∞ J(x; d) (≤ +∞) . Then,

lim
µ1→+∞

F2(µ1, 0) = Jmax

N−1∑
k=0

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)e−γ t1Pk>0 dt dτ1 · · · dτk − U0

S − CH

(39)

and

lim
µ2→+∞

F2(µ1, µ2) = Jmax γ
−1 − U0

S − CH , (40)

and

lim
µ1→+∞

F1(µ1, 0) = Jmax

N−1∑
k=0

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)e−γ tPk 1Pk>0 dt dτ1 · · · dτk − C (41)

Lemma A.8 The function F1(µ1, µ2) is monotone increasing in µ1. Thus, if (41) is

positive then there exists a µ∗
1 > 0 such that F1(µ

∗
1, 0) = 0. Otherwise, F1(µ1, 0) < 0 for

all µ1 > 0.
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Lemma A.9 The function F2(µ1, µ2) is monotone increasing in µ2. If (40) is positive,

then there exists a unique solution µ∗
2 to F2(0, µ2) = 0. This is the optimal contract if

F1(0, µ
∗
2) ≥ 0.36

Furthermore, the function F2(µ1, 0) is monotone increasing in µ1; therefore, there

exists a µ̄1 > µ∗
1 such that F2(µ̄1, 0) = 0 if and only if (39) is positive.

For any µ1 ∈ [0, µ̄1],
37 there exists a unique µ2 = ζ(µ1) solving F2(µ1, µ2) = 0.

Proposition A.10 The optimal contract when the buyer has full power in designing the

contract exists if and only if (40) is positive.

Proof. Indeed, if (40) is negative, the IR constraint for the seller is violated for any

contract and therefore the seller will never participate. Suppose first that µ∗
1 exists and

is finite. Then, if F2(µ
∗
1, 0) > 0 then the optimal contract corresponds to (µ∗

1, 0).

If F1(0, µ
∗
2) > 0 then the optimal contract corresponds to (0, µ∗

2).

Otherwise, we know that F2(µ1, 0) < 0 for µ1 ∈ [0, µ̄1] and hence, by continuity, there

exists a solution µ1 ∈ [0, µ̄1] to

F1(µ1, ζ(µ1)) = 0 . (42)

because F1(0, ζ(0)) = F1(0, µ
∗
2) < 0, whereas F1(µ̄1, ζ(µ̄1)) = F1(µ̄1, 0) ≥ F1(µ

∗
1, 0) =

0 and the existence follows immediately from continuity. To prove uniqueness, we show

that F1(µ1, ζ(µ1)) is monotone increasing in µ1. Indeed,

∂ζ

∂µ1

= −
∂F2

∂µ1

∂F2

∂µ2

. (43)

36This can never happen if the optimal contract implements the highest effort level, but it can happen
if the contract implements a lower effort level.

37If µ̄1 does not exist, we set µ̄1 = ∞.
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Furthermore,

∂gk
∂µ1

=

∫
Rk
+

ψH
k (τ1, · · · , τk, t)

∫ T̄

τk

e(r−2γ) tP2
k Jx(e

(r−γ)t(µ1Pk + µ2); dk)dt dτ1 · · · dτk (44)

and

∂gk
∂µ2

=

∫
Rk
+

ψH
k (τ1, · · · , τk, t)

∫ T̄

τk

e(r−2γ) tPk Jx(e
(r−γ)t(µ1Pk + µ2); dk)dt dτ1 · · · dτk (45)

Similarly,

∂hk
∂µ1

=

∫
Rk
+

ψH
k (τ1, · · · , τk, t)

∫ T̄

τk

e(r−2γ) tPk Jx(e
(r−γ)t(µ1Pk+µ2); dk)dt dτ1 · · · dτk =

∂gk
∂µ2

(46)

and

∂hk
∂µ2

=

∫
Rk
+

ψH
k (τ1, · · · , τk, t)

∫ T̄

τk

e(r−2γ) t Jx(e
(r−γ)t(µ1Pk + µ2); dk)dt dτ1 · · · dτk (47)

Therefore,

d

dµ1

F1(µ1, ζ(µ1)) =
∂F1

∂µ1

− ∂F1

∂µ2

∂F2

∂µ1

∂F2

∂µ2

(48)

and hence, to prove monotonicity, we need to show that

∂F2

∂µ2

∂F1

∂µ1

≥ ∂F2

∂µ1

∂F1

∂µ2

. (49)

We use the following slight modification of the Cauchy-Schwarz inequality.
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Lemma A.11 For any function ψk(x), gk(x), we have

∑
k

∫
Rm

ψ2
k(x)dx

∑
k

∫
Rm

g2k(x)dx ≥

(∑
k

∫
Rm

ψk(x)gk(x)dx

)2

.

The required inequality (49) follows now from (44)-(46) and Lemma A.11 if we let

ψ2
k(x, τk) = ψH

k (τ1, · · · , τk, t)1[τk,T̄ ] e
(r−2γ) tP2

kJx(e
(r−γ)t(µ1Pk + µ2); dk)

g2k(x, τk) = ψH
k (τ1, · · · , τk, t)1[τk,T̄ ] e

(r−2γ) tJx(e
(r−γ)t(µ1Pk + µ2); dk)

(50)

Finally, the fact that the maturity of the contract is finite follows directly from γ > r.

Now, let us consider the case where the seller has all the bargaining power. For

simplicity, we assume that `B = −∞.

Then, F1 stays the same, but F2 is replaced by

F̃2(µ1, µ2) =
N−1∑
k=0

h̃k(µ1, µ2) − U0
B,

where

h̃k(µ1, µ2) =

∫
Rk+1
+

ψH
k (τ1, · · · , τk, t)e−rtuB

(
dk − w(vk(t, τ[1,k]))

)
dt dτ1 · · · dτk

The same arguments already given imply that the following is true.

Lemma A.12 The function F̃2 is monotone decreasing in µ2 and F̃2 → −∞ when

µ2 → +∞ and there exists a unique solution µ̃∗
2 to F̃2(0, µ̃

∗
2) = 0. This is the optimal

contract if F1(0, µ̃
∗
2) ≥ 0.38

Furthermore, F̃2(µ1, 0) is monotone decreasing in µ1 and therefore there exists a

38Note that this can only happen if we are not implementing the highest effort level.
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µ̄1 > 0 such that F̃2(µ̄1, 0) = 0. For any µ1 ∈ [0, µ̄1], F̃2(µ1, 0) > 0 and, there exists,

therefore, a unique µ2 = ζ̃(µ1) such that F̃2(µ1, ζ̃(µ1)) = 0.

Note that, by definition, ζ̃(µ̄1) = 0 and ζ̃(0) = µ∗
2.

Proposition A.13 For the case when the seller has full bargaining power in designing

the contract, the optimal contract exists if and only if at least one of the two numbers

F1(0, µ
∗
2) < 0 and F1(µ̄1, 0) < 0 is positive.

Proof. If F1(0, µ
∗
2) > 0 then (0, µ∗

2) corresponds to the optimal contract.

Suppose now that F1(0, µ
∗
2) < 0, that is F1(0, ζ̃(0)) < 0. Using (25), it is not difficult to

show that F1(µ1, ζ̃(µ1)) is monotone increasing in µ1. Now, the claim follows if F1(µ̄1, 0) >

0.

However, if F1(µ̄1, 0) < 0 and F1(0, µ
∗
2) < 0, then the optimal contract obviously does

not exist. Indeed, the unique pair (µ1, µ2) has µ2 = 0 in this case, but this contract does

not satisfy the optimality conditions for any finite µ̃PC.

B Hazard Rate and Likelihood Ratio Properties

Proof of Proposition 3..3. The claim of Proposition 3..3 directly follows from

the following lemma.

Lemma B.1 Suppose that the densities pei ≺hr pej . Then, for any k ≥ 0 and any

τ1 ≤ · · · ≤ τk ≤ τk+1 ≤ t,

Pk,ei,ej(t; τ[1,k]) ≥ Pk+1(t; τ[1,k+1]) .

Proof of Lemma B.1. By definition, we need to show that

pei(τ1) · · · pei(τk)(Gei(t))
N−k

pej(τ1) · · · pej(τk)(Gej(t))
N−k

≤ pei(τ1) · · · pei(τk)pei(τk+1)(Gei(t))
N−k−1

pej(τ1) · · · pej(τk)pej(τk+1)(Gej(t))
N−k−1

,
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that is

Gei(t)

Gej(t)
≤ pei(τk+1)

pej(τk+1)
.

Because, pei ≺hr pej , we have

pei(τk+1)

pej(τk+1)
>

Gei(τk+1)

Gej(τk+1)
.

Thus, it remains to be shown that Gei(t)/Gej(t) is monotone decreasing in t. This follows

immediately from pei ≺hr pej and from the identity

d

dt

(
Gei(t)

Gej(t)

)
=

−pei(t)Gej(t) + pej(t)Gei(t)

(Gej(t))
2

.

Proof of Proposition 6..1. The claims about≺lr order follow by direct calculation.

A direct calculation also shows that pa,m,σ is monotone increasing in x in the sense of

≺lr, and that P∞
a,m,σ is increasing in x,m and decreasing in σ. So, the claim for x follows.

Indeed, let x1 ≥ x2 and let pi(t) = pxi,m,σ(t) , i = 1, 2, and Gi(t) = Gxi,m,σ(t), i = 1, 2

and P∞
i = limt→∞Gi(t). Then, by the monotone likelihood property of the densities, we

have ∫ ∞

t

p1(s)ds =

∫ ∞

t

p1(s)

p2(s)
p2(s)ds ≥ p1(t)

p2(t)

∫ ∞

t

p2(s)ds .

Therefore,

p1(t)

G1(t)
=

p1(t)∫∞
t

p1(s)ds + P∞
1

≤ p2(t)∫∞
t

p2(s)ds +
p2(t)P∞

1

p1(t)

.
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Thus, to complete the proof, it remains to be shown that

p2(t)P
∞
1

p1(t)
≥ P∞

2 . (51)

Because p2(t)/p1(t) is decreasing, we have

p2(t)P
∞
1

p1(t)
≥ lim

t→∞

p2(t)P
∞
1

p1(t)
=

x2
x1
e

m(x1−x2)

σ2 (1− e−
2mx1
σ2 )

and a direct calculation implies that the required inequality (51) is equivalent to the

monotonicity of the function x−1 (ex − e−x) for x ≥ 0. This follows because

x−1 (ex − e−x) =
∞∑
n=0

x2n

(2n+ 1)!
.

Now, for the m parameter, let pei(t) = pa,mei ,σ, pej(t) = pa,mej ,σ. Then, a direct

calculation shows that pej ≺lr pei . It also follows from the definition of the stopping

time that Gej(t) ≥ Gei(t) for all t. Indeed, Gej(t) is the probability that a geometric

Brownian motion Aj
t that starts at A0 does not fall below the barrier AB < A0 over the

time interval [0, t]. But since mj > mi, we have

Aj
t = A0 e

mjt+σBt ≥ A0 e
mit+σBt = Ai

t,

and therefore Aj
t will always fall below AB later than Ai

t.

Now, let

φ(t) =
pei(t)

pej(t)
− Gei(t)

Gej(t)
.

Then, our goal is to show that φ(t) ≥ 0 for all t ≥ 0. We have φ(0) = 0 and, since
pei (t)

pej (t)
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is increasing, we always have pei(t) > pej(t). Furthermore, a direct calculation shows that

− d

dt

(
Gei(t)

Gej(t)

)
=

pei(t)Gej(t)− pej(t)Gei(t)

G2
ej
(t)

and therefore,

pei(t)Gej(t)− pej(t)Gei(t) ≥ Gei(t) (pei(t)− pej(t)) ≥ 0 .

Finally, the claim for the volatility follows from scale invariance: If σej = ασei for some

α > 1, we have

px,σ
H ,m = px/α,σ

L,m/α

, and the claim follows from the just proven results for the (x,m) parameters.

The following result is a direct consequence of the above.

Proposition B.2 Suppose that pej = p(aj ,mj ,σj): that is, exerting effort level ej leads to

selecting borrowers with parameters (aj,mj, σj). Then, higher effort reduces default risk

if and only if
aj
σj

and
mjaj
σ2
j

is monotone increasing in j. In this case, for any j > i, we

have:

(1) If
mj

σj
> mi

σi
, then pei ≺hr pej , and there exists a t̄ > 0 such that the likelihood ratio

pej(t)/pei(t) is monotone increasing for t < t̄ and monotone decreasing for t > t̄.39

Thus, higher effort reduces the default hazard rate, but its effect on the likelihood

ratio is ambiguous.

(2) If
mj

σj
< mi

σi
, then pei ≺lr pej , and there exists a threshold t̂ > 0 such that the hazard

rates satisfy hei(t) ≥ hej(t) if and only if t < t̂. Thus, higher effort reduces the

hazard rate for t < t̂, but increases it for t > t̂.

39In fact, t̄ =
(aj/σj)

2−(ai/σi)
2

(mj/σj)2−(mi/σi)2
.
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Proposition B.3 Suppose that, as in Proposition B.2, pek = p(ak,mk,σk) for some

ak,mk, σk > 0 and that higher effort reduces default risk. Then, the following is true:

(1) If
mj

σj
≥ mi

σi
for all i, then the optimal contract payments xn(t, τ[1,n]) are

– decreasing with n; and

– increasing (decreasing) in τk, k = 1, · · · , n for sufficiently small (large) τk.

(2) If
mj

σj
≤ mi

σi
for all i then the optimal contract payments xn(t, τ[1,n]) are

– decreasing (increasing) in n for sufficiently small (large) n; and

– increasing in τk, k = 1, · · · , n.

Proof of Proposition 4..4. The proof follows directly both from Theorem 4..3

and from the following auxiliary result:

Lemma B.4 For any real numbers a1, · · · , aK , α1, · · · , αK ∈ R \ {0}, equation

∑
i

ai e
αit = 0 (52)

can have at most K − 1 solutions whereas equation

∑
i

ai e
αit = A (53)

can have at most K solutions for any A 6= 0.

Proof of Lemma B.4. The proof is by induction. For K = 1, the claim is obvious.

Suppose now that the claim is proven for K = M , and let us show it for K = M + 1.

Suppose, on the contrary, that (52) has at least M +1 solutions. Then, the same is true

for
M+1∑
i=2

ai e
(αi−α1) t = −a1, (54)
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which is impossible because, by the induction hypothesis, it may have at most M solu-

tions. (53) follows directly from Roll Theorem and the above results.

C Proof of Theorems 4..1 and 4..3

For simplicity, we only consider the case when the buyer is risk neutral, AB = 0,

and we assume that the effort is binary, e ∈ {eH , eL}, and that the investor has all the

bargaining power.

We start with the following important observation.

Lemma C.1 Suppose that the investor is risk neutral (i.e., AB = 0). If the desired

effort level is not minimal, then at least one of the IC constraints is binding.

Proof. Indeed, if none of the constraints are binding, we get that the contract

payments rates {xn} are deterministic and therefore it is always optimal for the issuer

to exert lowest possible effort.

In this case, a direct calculation shows that

w(z) = (uS)
−1 = −A−1

S ln(1− ASz)

and

J(z; d) = A−1
S

(
1− z−1

)
is independent of d. Hence, the LL constraint is not binding if and only if

e(r−γ)t(µ1Pk + µ2) ≥ 1 .
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We also assume that both IC and IR constraints are binding.40 Denote

1k ≡ 1e(r−γ)t(µ1Pk+µ2) ≥ 1 .

Then, we are considering the system of equations

φ1(µ1, µ2) = AS C

φ2(µ1, µ2) = AS(U
0
S + C)

(55)

with

φ1(µ1, µ2)

=
N−1∑
k=0

∫
Rk
+

∫ T̄

τk

ψH
k (τ1, · · · , τk, t)Pk,ei,ej e

−γ t1k

(
1− 1

e(r−γ)t(µ1Pk + µ2)

)
dt dτ1 · · · dτk

φ2(µ1, µ2) =
N−1∑
k=0

∫
Rk
+

∫ T̄

τk

ψH
k (τ1, · · · , τk, t) e−γ t1k

(
1− 1

e(r−γ)t(µ1Pk + µ2)

)
dt dτ1 · · · dτk

(56)

Interestingly enough, the only dependence on AS is through the right-hand sides of (55).

Let us determine the dependence of µ1, µ2 on AS to calculate the limit as AS → 0. We

have

φ2(µ1, ζ(µ1, AS)) = AS(U
0
S + C) ,

which gives

∂ζ

∂AS

=
U0
S + C
∂φ2

∂µ2

.

Thus, differentiating

φ1(µ1, ζ(µ1, AS)) = AS C

40This is indeed always true in the risk neutral limit. The general case follows by a modification of
the arguments below.
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we get

∂µ1

∂AS

=
C − ∂φ1

∂µ2

∂ζ
∂AS

∂φ1

∂µ1
+ ∂φ1

∂µ2

∂ζ
∂µ1

=

(
∂φ2

∂µ2
− ∂φ1

∂µ2

)
C − U0

S
∂φ1

∂µ2

∂φ1

∂µ1

∂φ2

∂µ2
− ∂φ1

∂µ2

∂φ2

∂µ1

Lemma C.2 Both µ1, µ2 stay bounded when AS → 0.

Proof. Because φ2(µ1, 0) is monotone increasing in µ1, we immediately get that the

solution µ̄1 to φ2(µ̄1, 0) = AS(U
0
S + C) is monotone increasing in AS. The same is true

for µ∗
1 and µ∗

2. Thus, if only one of the IC or IR constraints is binding, we are done.

Suppose now that both constraints are binding. Because µ1 ∈ [0, µ̄1], then µ1 stays

bounded as AS → 0. Furthermore, it is straightforward to show that φ2(µ1, µ2) converges

to a positive number when µ1 stays bounded and µ2 → ∞, and it immediately follows

that µ2 has to stay bounded when AS → 0.

Lemma C.3 For sufficiently small AS, we have xk = 0 for k ≥ 1.

Proof. By Proposition 3..3, xk is monotone decreasing with k and therefore maxx0(t) >

0 because otherwise the whole payment stream will be identically zero.

Let us now show that maxt AS x0(t) → 0 as AS → 0. For simplicity, we only consider

the case where the IR constraint is binding. The case where only IC is binding is

completely analogous.

Using the inequality

A−1
S (1− e−ASx) > x

for all x ≥ 0, we get that

U0
S ≥

N−1∑
k=0

∫
Rk
+

∫ T̄

τk

ψH
k (τ1, · · · , τk, t) e−γ txk(t, τ[1,k])dt dτ1 · · · dτk

≥
∫ T̄

τk

ψH
0 (t) e−γ tx0(t) dt

(57)

63



where

x0 = max{0, 1

AS

log
(
e(r−γ)t(µ1P0 + µ2)

)
} .

Now, suppose that maxt AS x0(t) 6→ 0. Then, for some ε > 0, there exists a sequence

ASn → 0 such that the corresponding contractual payments satisfy maxASnx0(t, n) > ε.

Because, by Lemma C.2 µ1, µ2 stay uniformly bounded, the threshold

T̄0 ≡ sup{t > 0 : x0(t) > 0}

also stays uniformly bounded. Therefore, the maximum location t0 of x0 also stays

uniformly bounded, and so does the derivative of ASx0 in (max{0, t1(0)}, T̄ ). Let K =

sup(max{0,t1(0)},T̄ )AS|x′0(t)|. Then, for all t ∈ (t0, t0 + ε/(2K)) we have

ASx0(t) = ASx0(t0) +

∫ t

t0

ASx
′
0(s)ds ≥ ε/2 .

Therefore,

U0
S ≥ 0.5εA−1

S

∫ t0+ε/(2K)

t0

ψH
0 (t)e−γtdt,

which is impossible because the right-hand side converges to +∞ when AS → 0. Thus,

max

{
e(r−γ)t

(
µPC +

∑
i 6=j

µIC,iP0,ei,ej(t)

)}
→ 1 (58)

when AS → 0.

Because xk ≤ x1 ≤ x0, it suffices to show that x1 is identically zero for small AS.

Because T̄0 stays bounded when AS → 0, the support of x1 is uniformly bounded from

above by some T̃ as AS → 0. Furthermore, by the argument from the proof of Lemma

B.1,

P1,ei,ej ≤ 1 −
(
Gei(t)

Gej(t)

)N−1
pei(t)

pej(t)
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By continuity and the fact that ej has the highest hazard rate, we have

min
i 6=j

inf
(0,T̃ ]

pei(t)Gej(t)

pej(t)Gej(t)
= κ > 1

Furthermore,

min
i

min
t∈[0,T̃ ]

P1,ei,ej ≡ δ > 0.

We consider two cases.

Case 1. In the limit AS → 0, mini µIC,i > ε for some ε > 0. In this case, because

µPC +
∑
i6=j

µIC,i ≤ M

, for some M > 0, we get that

e(r−γ)t

(
µPC +

∑
i 6=j

µIC,iP0,ei,ej(t)

)
≤ α e(r−γ)t

(
µPC +

∑
i6=j

µIC,iP0,ei,ej(t)

)

where α < 1 but sufficiently close to 1 so that

α + (εδ)−1(1− α)M < κ.

Thus, by (58),

e(r−γ)t

(
µPC +

∑
i 6=j

µIC,iP0,ei,ej(t)

)
< 1

for sufficiently small AS, and the claim follows.

Case 2. Suppose that there is a sequence ASn → 0 such that the corresponding

µIC,i(n) → 0 for all i. By (58), this immediately yields µPC → 1. Therefore, arguments

of all local maxima (if there are any) of x0(t) will converge to 0 when n→ ∞. Thus, all

payments will be concentrated at time zero in the limit; thus, in the limit, the utility
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of the intermediary will be independent of the effort level. This result would mean that

the IC constraints cannot be binding, which is a contradiction.

To complete the proof, we note that, since Lagrange multipliers stay bounded, we can

always pick a convergent subsequence of those. For this subsequence, it follows from the

above arguments that the contract converges to a sum of delta functions at the locations

of those local maxima of x0 for which

e(r−γ)t

(
µPC +

∑
i6=j

µIC,iP0,ei,ej(t)

)

converges to 1.

Finally, in the binary effort case, we note that it is possible to show that Lagrange

multipliers are monotone decreasing in AS and therefore converge to finite limits.

D Proof of Theorem 4..5

Here, we prove the following more general statement.

Theorem D.1 Suppose that the effort is binary, default time distributions are from the

Black and Cox model, peL ≺hr peH and the desired effort level is eH . Then, in the risk

neutral limit, the optimal contract makes a lump sum payment y0 ≥ 0 to the intermediary

at time 0, and then a lump sum payment y1 > 0 at a time t∗ if no default occurs before

t = t∗. Furthermore:

(1) Suppose that the investor has full bargaining power in designing the contract (mo-

nopolistic case). Then, there exist thresholds C∗
B,1 < C∗

B,2 such that:

(i) If CH < C∗
B,1, we have y0 > 0 and t∗ = t∗1 is independent of CH .

(ii) If C∗
B,1 ≤ CH < C∗

B,2, we have y0 = 0 and t∗ is monotone increasing in CH .

(iii) If CH ≥ C∗
B,2, we have y0 = 0 and t∗ = t∗0 is independent of CH .
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(2) Suppose that the intermediary has full bargaining power in designing the contract

(competitive case). Then, there exists a threshold C∗
S such that:

(i) If CH < C∗
S, we have y0 > 0 and t∗ = t∗1 is independent of CH .

(ii) If CH ≥ C∗
S, we have y0 = 0 and t∗ is monotone increasing in CH .

Proof. By Theorem 4..3, we know that the optimal contract makes at most two

payments, at time zero and at a time t∗ > 0. Thus, determining the optimal contract is

equivalent to finding the contract in this class, maximizing the utility of the agent who

has full bargaining power.

Because the desired effort level is eH , the IC constraint is binding and therefore we

always have

y1 = Y (t∗),

where

Y (t) =
eγt (CH − CL)

(GeH (t))
N − (GeL(t))

N
. (59)

Therefore:

US({dX}, ei) = y0 + Prob[τ1 > t∗|ei] e−γt∗ y1 − Ci

= y0 + (Gei(t
∗))N e−γt∗ y1 − Ci

(60)

(1) Suppose that the investor has full bargaining power. Then, the investor’s maxi-

mization problem takes the form

min
t,y0

{
y0 +

e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N

: y0 ≥ 0, y0 +
(CH − CL)

1− (GeL(t)/GeH (t))
N

≥ U0
S + CH

}

Because peL ≺hr peH , the quotient
GeH

(t)

GeL
(t)

is monotone increasing in t; therefore, a direct

calculation shows that

U0
S + CH ≤ CH − CL

1− (GeL(t
∗)/GeH (t

∗))N)
(61)
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is equivalent to

t∗ ≤ t∗B ,

where t∗B = t∗B is the unique solution to

GeH (t
∗
B)

GeL(t
∗
B)

=

(
U0
S + CH

U0
S + CL

)1/N

. (62)

Note that this unique solution only exists if

P∞
eH

P∞
eL

>

(
U0
S + CH

U0
S + CL

)1/N

.

Otherwise, we set t∗B = +∞. Clearly, t∗B → 0 as N → ∞.

Thus, if t < t∗B, the optimal choice is clearly y0 = 0 and the cost minimization problem

takes the form

min
t≤t∗B

e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N
, (63)

and the minimum is clearly attained at min{t∗B, t∗0} .

If t > t∗B, y0 needs to be positive to satisfy the IR constraint of the seller, and the

optimal choice is clearly

y0 = U0
S + CH − (CH − CL)

1− (GeL(t)/GeH (t))
N
.

Therefore, the cost minimization problem takes the form

min
t≥t∗B

(
U0
S + CH +

(CH − CL)(e
(γ−r)t − 1)

1− (GeL(t)/GeH (t))
N

)
, (64)

and the minimum is clearly attained at max{t∗B, t∗1} . The minimal cost is then given by

the minimum of the two quantities (70) and (71).
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Furthermore, a direct calculation shows that

d

dt

(CH − CL)(e
(γ−r)t − 1)

1− (GeL(t)/GeH (t))
N

>
d

dt

e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N

and therefore t∗1 < t∗0. Furthermore, we clearly have t∗0, t
∗
1 → 0 as N → ∞.

Now, because
GeH

(t)

GeL
(t)

is monotone increasing in t, the threshold t∗B is monotone in-

creasing in CH and t∗B ↓ 0 when CH ↓ CL, and t
∗
B converges to +∞ when CH increases.

Therefore, there exist thresholds C∗
B,1 < C∗

B,2 such that t∗B = t∗1 when CH = C∗
B,1 and

t∗B = t∗0 when CH = C∗
B,2 .

Because the functions

φi(t) ≡ (e(γ−r)t − i)

1− (GeL(t)/GeH (t))
N

are monotone decreasing (increasing) for t ≤ t∗i (t ≥ t∗i ), i = 0, 1, we get that, for

CH < C∗
B,1,

U0
S + CH +

(CH − CL)(e
(γ−r)t∗1 − 1)

1− (GeL(t
∗
1)/GeH (t

∗
1))

N
≤ U0

S + CH +
(CH − CL)(e

(γ−r)t∗B − 1)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N

=
e(γ−r)t∗B (CH − CL)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N
,

(65)

hence the contract corresponding to t∗1 is optimal.

When C∗
B,1 < CH < C∗

B,2, we have t∗1 < t∗B < t∗0 and therefore the quantity (71)

is equal to (70) and the minimum is attained when y0 = 0 and t = t∗B. Finally, when

CH > C∗
B,2, we have t∗B > t∗0 > t∗1 and therefore the minimum in (71) is still attained

at t = t∗B, whereas the maximum in (70) is attained at t = t∗0 and is therefore strictly

smaller.

(2) Suppose now that the intermediary has full bargaining power. Then, the same

arguments used in case 1 imply that the maximization problem for the intermediary
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takes the form

max

{
y0 +

(CH − CL)

1− (GeL(t)/GeH (t))
N

: y0 +
e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N

≤ UB({δn}, eH)− U0
B

}

Thus, we are maximizing over the set

{
t :

e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N

≤ UB({δn}, eH)− U0
B

}
,

which coincides with a segment [tS, tS] satisfying tS ≤ t∗0 ≤ tS . The optimal y0 is always

given by

y0 = − e(γ−r)t (CH − CL)

1− (GeL(t)/GeH (t))
N

+ UB({δn}, eH)− U0
B .

Hence, the maximization problem takes the form

max
t∈[tS ,tS ]

(
UB({δn}, eH)− U0

B − (e(γ−r)t − 1) (CH − CL)

1− (GeL(t)/GeH (t))
N

)
.

Because t∗1 < t∗0 < tS, the maximum is attained at max{t∗1, tS}. Clearly, tS is the minimal

solution to

e(γ−r)t

1− (GeL(t)/GeH (t))
N

=
UB({δn}, eH)− U0

B

CH − CL

and is therefore increasing in CH . Furthermore, tS ↓ 0 as CH ↓ CL and tS → 0 as N → ∞.

Therefore, there exists a threshold C∗
S such that t∗1 > tS if and only if CH < C∗

S, and the

required assertion follows.

Proof of Proposition 4..9. By definition, t∗1 solves

0 =
d

dt

e(γ−r)t − 1

1− (GeL(t)/GeH (t))
N

=
(γ − r)e(γ−r)t(1− (GeL(t)/GeH (t))

N)− (e(γ−r)t − 1)N(GeL(t)/GeH (t))
N (heL(t)− heH (t))

(1− (GeL(t)/GeH (t))
N)2

.

(66)
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Because t∗1 is a local minimum, this derivative changes sign from negative to positive at

t∗1. Therefore, the same is true for the function

φ(t) ≡ 1− N(heL(t)− heH (t))(1− e−(γ−r)t)

(γ − r)((GeH (t)/GeL(t))
N − 1)

,

and hence φ′(t∗1) > 0.41

A direct calculation shows that, for any A > 1, the function (Ay − 1)/y is monotone

increasing in y, whereas (1− A−y)/y is monotone decreasing in y. Therefore,

∂φ

∂N
> 0 ,

∂φ

∂(γ − r)
> 0 .

Differentiating the identity φ(t∗1) = 0, we get

∂t∗1
∂N

= −∂φ/∂N
∂φ/∂t∗1

|t=t∗1
< 0

and the same is true for γ − r.

Similar arguments imply that

• t∗B is monotone decreasing in N, CL and U0
S and is monotone increasing in CH ;

• t∗0 is monotone decreasing in γ−r and N. In particular, the maturity of the optimal

contract is then also decreasing in N and γ − r;

• tS is monotone decreasing in N and is increasing in U0
B, CH − CL and γ − r.

Finally, tS < t∗0 by the arguments given.

The proof is complete.

41For simplicity we assume that the inequality is strict. This is true for generic parameter values.
The general case can be considered by a small modification of the argument.
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Proposition D.2 Under the hypothesis of Theorem 4..5, the total second best surplus

SBH for high effort satisfies the following:

• In the monopolistic case, the total surplus for the investor is given by

SBH(N) =


FBH − (CH − CL)φ1(t

∗
1) , CH < C∗

B,1

FBH − (e(γ−r)t∗B − 1)(U0
S + CH) , CH ∈ [C∗

B,1, C
∗
B,2)

FBH − ((CH − CL)φ0(t
∗
0)− (U0

S + CH)) , CH > C∗
B,2.

• In the competitive case, the total surplus for the intermediary is given by

SBH(N)

=


FBH − (CH − CL)φ1(t

∗
1) , CH < C∗

S

FBH −
(
(1− e−(γ−r)t∗)(UB({δn}, eH)− U0

B)− (U0
S + CH)

)
, CH ≥ C∗

S .

(67)

In particular, for C < min{C∗
B,1, C

∗
S}, the two surpluses are identical.

Proof of Proposition 5..2. We only consider the case CH < C∗. Other cases are

similar.

Because GL(t)/GH(t) < 1, we have that (GL(t)/GH(t))
N is monotone decreasing in

N. Consequently,

φi(t) =
e(γ−r)t − i

1− (GL(t)/GH(t))N

is also decreasing in N.

Now, fix an ε > 0 and let τ > 0 be such that e(γ−r)τ − 1 < ε/2. Then, there exists an

N(τ) such that (GL(t)/GH(t))
N < 0.5 for all N > N(τ). Therefore, for all N > N(τ),

we have

min
t>0

φ1(t) ≤ φ1(τ) <
ε/2

0.5
= ε,
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and the required assertion follows.

It follows directly from Proposition B.2 that the following is true.

Proposition D.3 In the Black and Cox setting, suppose that the effort is binary, higher

effort reduces default risk, but mH/σH < mL/σL. Then,

max
τ[1,n]≤t

xn(t; τ[1,n]) = xn(t; (t, · · · , t))

and therefore xn(t; τ[1,n]) is identically zero for t ≥ t̄n, where

t̄n = max

{
t : e(r−γ)t

(
µ1

(
1 − (peL(t))

n(GeL(t))
N−n

(peH (t))
n(GeH (t))

N−n

)
+ µ2

)
≥ 1

}
.

Proposition D.4 (The threshold model) Suppose that

peL(t) = 1t≥sλH e
−λH(t−s) , peH (t) = 1t≥sλL e

−λL(t−s) .

Let also

t∗B =
1

(λH − λL)N
log

(
U0
S + CH

U0
S + CL

)
, t∗0 =

1

(λH − λL)N
log

(
1 +

(λH − λL)N

γ − r

)

Then, the following is true:

and the maturity of the optimal contract is min{t∗B, t∗0} in the monopolistic case and

tS in the competitive case.

Proof of Proposition 4..6. It follows directly from the above that the required

assertion holds if and only if t∗1 > 0. The claim thus immediately follows from φ1(0) =

+∞.

Proof of Proposition 4..7. First, it follows by direct calculation that the dis-

tributions are 2-regular and the local maxima can only happen at t = 0 and a single

73



positive t∗.

(1) Suppose that the investor has full bargaining power. Then, the investor’s maxi-

mization problem takes the form

min
t,y0

{
y0 +

e(γ−r)t (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
: y0 ≥ 0, y0 +

(CH − CL)

1− (GeL(t− s)/GeH (t− s))N
≥ U0

S + CH

}

Because peL ≺hr peH , the quotient
GeH

(t)

GeL
(t)

is monotone increasing in t; therefore, a direct

calculation shows that

U0
S + CH ≤ CH − CL

1− (GeL(t
∗ − s)/GeH (t

∗ − s))N)
(68)

is equivalent to

t∗ ≤ s+ t∗B ,

where t∗B = t∗B is the unique solution to

GeH (t
∗
B)

GeL(t
∗
B)

=

(
U0
S + CH

U0
S + CL

)1/N

. (69)

Note that this unique solution only exists if

P∞
eH

P∞
eL

>

(
U0
S + CH

U0
S + CL

)1/N

.

Otherwise, we set t∗B = +∞. Clearly, t∗B → 0 as N → ∞.

Thus, if t < s + t∗B, the optimal choice is clearly y0 = 0 and the cost minimization

problem takes the form

min
t≤t∗B

e(γ−r)t (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
, (70)
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and the minimum is clearly attained at s+min{t∗B, t∗0} .

If t > t∗B + s, y0 needs to be positive to satisfy the IR constraint of the seller, and the

optimal choice is clearly

y0 = U0
S + CH − (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
.

Therefore, the cost minimization problem takes the form

min
t≥t∗B+s

(
U0
S + CH +

(CH − CL)(e
(γ−r)t − 1)

1− (GeL(t− s)/GeH (t− s))N

)
, (71)

and the minimum is clearly attained at s+max{t∗B, t∗1(s)} , where t∗1(s) minimizes

(CH − CL)(e
(γ−r)se(γ−r)t − 1)

1− (GeL(t)/GeH (t))
N

over t ≥ 0.

Lemma D.5 We have t∗1(0) = 0 and t∗1(s) is monotone increasing in s and converges to

t∗0 as s → ∞. Thus, there exists a critical s̄ > 0 such that t∗1(s̄) = t∗B and t∗1(s) > t∗B for

all s > s̄.

Proof. First, a direct calculation shows that the function (ea − 1)/a is monotone

increasing in a. Indeed, differentiating, we get that this is equivalent to ea(a− 1)+1 > 0

which is in turn equivalent to e−a > 1− a, which follows from the convexity of e−a. This

immediately implies that

ea − 1

a
>

e−b − 1

−b
=

1− e−b

b
⇒ ea − 1

1− e−b
>
a

b
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for any a, b > 0. Thus,

e(γ−r)t − 1

1− e−(λH−λL)Nt
>

γ − r

(λH − λL)N
= lim

t↓0

e(γ−r)t − 1

1− e−(λH−λL)Nt
,

and hence t∗1(0) = 0. Monotonicity in s follows by the same arguments as above. Finally,

convergence to t∗0 follows because

t∗1 = argmin
(CH − CL)(e

(γ−r)t − e−(γ−r)s)

1− (GeL(t)/GeH (t))
N

and this function converges to φ0(t) as s→ ∞.

The minimal cost is then given by the minimum of the two quantities above.

Furthermore, a direct calculation shows that

d

dt

(CH − CL)(e
(γ−r)(t+s) − 1)

1− (GeL(t)/GeH (t))
N

>
d

dt

e(γ−r)(t+s) (CH − CL)

1− (GeL(t)/GeH (t))
N

and therefore t∗1 < t∗0. Furthermore, we clearly have t∗0, t
∗
1 → 0 as N → ∞.

Now, because
GeH

(t)

GeL
(t)

is monotone increasing in t, the threshold t∗B is monotone in-

creasing in CH and t∗B ↓ 0 when CH ↓ CL, and t
∗
B converges to +∞ when CH increases.

Therefore, there exist thresholds C∗
B,1(s) < C∗

B,2 such that t∗B = t∗1 when CH = C∗
B,1(s)

and t∗B = t∗0 when CH = C∗
B,2 .

Because the functions

φi(t) ≡ (e(γ−r)(t+s) − i)

1− (GeL(t)/GeH (t))
N
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are monotone decreasing (increasing) for t ≤ t∗i (t ≥ t∗i ), i = 0, 1, we get that, for

CH < C∗
B,1(s),

U0
S + CH +

(CH − CL)(e
(γ−r)(t∗1+s) − 1)

1− (GeL(t
∗
1)/GeH (t

∗
1))

N
≤ U0

S + CH +
(CH − CL)(e

(γ−r)(t∗B+s) − 1)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N

=
(CH − CL)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N
+

(CH − CL)(e
(γ−r)(t∗B+s) − 1)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N

=
e(γ−r)(t∗B+s) (CH − CL)

1− (GeL(t
∗
B)/GeH (t

∗
B))

N
,

(72)

hence the contract corresponding to t∗1(s) is optimal and y0 > 0.

When C∗
B,1 < CH < C∗

B,2, we have t∗1(s) < t∗B < t∗0 and therefore the quantity (71) is

equal to (70) and the minimum is attained when y0 = 0 and t = t∗B + s. Finally, when

CH > C∗
B,2, we have t∗B > t∗0 > t∗1 and therefore the minimum in (71) is still attained

at t = t∗B + s, whereas the maximum in (70) is attained at t = t∗0 + s and is therefore

strictly smaller.

(2) Suppose now that the intermediary has full bargaining power. Then, the same

arguments used in case 1 imply that the maximization problem for the intermediary

takes the form

max
{
y0 +

(CH − CL)

1− (GeL(t− s)/GeH (t− s))N
:

y0 +
e(γ−r)t (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
≤ UB({δn}, eH)− U0

B

} (73)

Thus, we are maximizing over the set

{
t :

e(γ−r)t (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
≤ UB({δn}, eH)− U0

B

}
,
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which coincides with a segment [tS(s), tS(s)] satisfying tS ≤ t∗0 + s ≤ tS . The optimal y0

is always given by

y0 = − e(γ−r)t (CH − CL)

1− (GeL(t− s)/GeH (t− s))N
+ UB({δn}, eH)− U0

B .

Hence, the maximization problem takes the form

max
t∈[tS ,tS ]

(
UB({δn}, eH)− U0

B − (e(γ−r)t − 1) (CH − CL)

1− (GeL(t− s)/GeH (t− s))N

)
.

Because t∗1(s) + s < t∗0(s) + s < tS, the maximum is attained at max{s + t∗1(s), tS(s)}.

Clearly, tS − s is the minimal solution to

e(γ−r)t

1− (GeL(t)/GeH (t))
N

= e−(γ−r)sUB({δn}, eH)− U0
B

CH − CL

and is therefore tS − s is monotone decreasing in s, and the existence of the threshold s̄

follows.

Proof of Proposition 4..8. As above, we need to show that t∗1 > 0. To this

end, it suffices to show that φ1(t) < φ
(
10) for sufficiently small t. This follows by direct

calculation from the Taylor formula and the l’Hopital rule.

E Securitization and equilibrium effort level in the risk neutral

case

The following claim follows by direct calculation

78



Lemma E.1 In the risk neutral case, we have

UB({δn}, ej) = N ur−1

(
1− (1−R/u)

∫ ∞

0

e−rtpej(t)dt

)

and

US({δn}, ej) = N uγ−1

(
1− (1−R/u)

∫ ∞

0

e−γtpej(t)dt

)
− Cj.

Thus, without securitization, the seller chooses high effort if and only if

CH − CL ≤ γ−1(u−R)N

∫ ∞

0

e−γt(peL(t)− peH (t)) dt = C. (74)

Lemma E.2 In the risk neutral case, the optimal contract implementing low effort sim-

ply makes a single payment at time 0. This payment is equal to

U0
S + CL

when the investor has full bargaining power, and to

UB({δn}, eL)− U0
B

when the intermediary has full bargaining power.

Proof. Because e−γt < e−rt for all t > 0, we have

E

[∫ ∞

0

e−γtdXt|eL
]

≤ E

[∫ ∞

0

e−rtdXt|eL
]
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and the inequality is strict if dXt is positive for t > 0 with positive probability. In the

case where the investor has full bargaining power, the intermediary’s PC constraint gives

min
dX≥0

E

[∫ ∞

0

e−rtdXt|eL
]

≥ U0
S,

and in the case where the intermediary has full bargaining power, the investor’s PC

constraint gives

max
dX≥0

E

[∫ ∞

0

e−γtdXt|eL
]

≤ UB({δn}, eL)− U0
B .
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