Optimal Auction Design for WiFi Procurement *

Information Systems Research, forthcoming

Liangfei Qiuf, Huaxia Ruif, and Andrew Whinston®

Abstract

The unprecedented growth of cellular traffic driven by the use of smartphone for
web surfing, video streaming, and cloud-based services poses bandwidth challenges
for cellular service providers. To manage the increasing data traffic, cellular service
providers are experimenting the use of third-party WiFi hotspots to augment its cel-
lular capacity. We develop an analytical framework to study the optimal procurement
auction for WiFi capacity. Such an auction design is complicated by the fact that
WiFi networks have much more limited spatial coverages compared with the cellular
network. Neither a global auction that includes all WiFi hotspots nor multiple local
auctions that include only hotspots in each local WiFi region is optimal. We find that
the optimal mechanism is an integration of one global auction which includes hotspots
from an endogeneously determined set of WiFi regions and many separate local auc-
tions which are only held in the rest of the WiFi regions. To implement the optimal
mechanism, we also provide an efficient algorithm whose computation complexity is of
the order of the number of WiFi regions. Our work contributes to the literature by
designing the optimal mechanism for a unique type of I'T procurement auction problem

which is a tight integration of economics and computational technology.
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1 Introduction

The increasing popularity of smartphones has triggered an explosive growth of mobile data
traffic driven by web surfing, video streaming, online gaming, and many other digital goods
industries (Tan et al. 2016; Tan and Carrillo 2017). According to Cisco VNI Global Mobile
Data Forecast Update (2016-2021), global mobile data traffic grew 63 percent in 2016 and
reached 7.2 exabytes per month at the end of 2016, up from 4.4 exabytes per month at
the end of 2015 1. Moreover, mobile data traffic is expected to grow at a compound annual
growth rate of 47 percent from 2016 to 2021, reaching 49.0 exabytes per month by 2021. The
huge amount of mobile data traffic poses a challenge to the network infrastructure: Cellular
networks are overloaded and congested during peak hours because of insufficient capacity,
which leads to poor user experience and churn.

Researchers have proposed several solutions from both technical and economic aspects:
(1) increasing the number of cellular towers or deploying the cell-splitting technology; (2)
upgrading the network to fourth-generation (4G) networks such as Long Term Evaluation
(LTE), High Speed Packet Access (HSPA) and WiMax; (3) expanding capacity by acquiring
the spectrum of other networks, such as the attempted purchase of T-Mobile USA by AT&T;
(4) adopting smart data pricing mechanisms (e.g. usage- and app-based pricing plans)
to constrain the heaviest mobile data users, instead of using flat-rate pricing plans with
unlimited data (Sen et al. 2012); and (5) offloading data traffic to WiFi networks (Bulut and
Szymanski 2012).

Although all these solutions help alleviate the problem, each has its disadvantages. The
first two solutions require large investments, and getting government approval for building
new cell towers can take years. From the economic perspective, it is extremely expensive

to increase the number of cellular base stations.? As a result, all cellular networks augment

Thttp: //www.cisco.com/c/en /us/solutions/collateral /service-provider /visual-networking-index-
vni/mobile-white-paper-c11-520862.pdf.

2According to Balachandran et al. (2008), although cell-splitting provides capacity benefits, it could be
quite expensive and economically infeasible since in addition to the base station hardware/deployment cost,
each of the new bases needs to be provided with backhaul connectivity either via wireline access or microwave



the first two solutions with other approaches to expand capacity. The third solution suffers
from regulatory constraints. Cramton et al. (2007) showed that an important market failure
arises in spectrum auctions with dominant incumbents. They suggest that the Federal
Communications Commission (FCC) should place limits on how much spectrum AT&T and
Verizon are allowed to buy.® Although the average net benefits realized under congestion-
based pricing tend to be higher than the average net benefits realized under flat-rate pricing
(Gupta et al. 2011), usage based plans may also backfire by alienating the smartphone users
who are likely the customer segment with the highest revenue growth potential.

Because of these technical, economic and regulatory constraints, the fifth solution—using
WiFi hotspots for mobile data traffic ofloading—seems to be one of the most promising
approaches in augmenting solutions (1) and (2). A straightforward approach is for the
cellular service providers to build and manage their own hotspots. In fact, we have seen
some pilot projects for self-managed hotspots (Aijaz et al. 2013). Even though the option of
service providers directly managing hotspots is often available, it is still expensive (Iosifidis
et al. 2015) and may not be cost-effective. For example, Paul et al. (2011) found that 28%
of subscribers generate traffic only in a single hour during peak hours in a day. Clearly,
building and managing hotspots just for that peak hour is not efficient. Offloading traffic
to third party hotspots overcomes the obstacle of managing a hotspot and ensures the high
availability of WiFi resources. This strategy could potentially be a win-win solution: The
cellular service provider saves the cost of building more cellular base stations or hotspots
just for the peak traffic demands. The WiFi hotspots profit from sharing their otherwise
wasted spare capacity. Indeed, such practice of sharing unused capacity is gaining traction
in the industry (e.g., Airbnb, Uber) thanks to the advancement in technology, and the study
of such sharing economy is also on the rise (Weber 2014).

We follow this paradigm of sharing economy and focus on offloading mobile traffic to

links.
3This concern is also reflected in the action taken by the FCC to block the recent merger between AT&T
and T-Mobile USA.



third-party WiFi hotspots owned by entities such as local restaurants, bookstores, and ho-
tels. Cellular service providers have shown great interest in such an approach. In 2012, for
example, KDDI Corporation, a principal telecommunication provider in Japan, had already
cooperated with about 100,000 commercial WiFi hotspots (Aijaz et al. 2013). However, of-
floading data traffic to third-party WiFi hotspots is not purely a technology augmenting the
existing cellular network. Considering the economic incentives of third-party WiFi hotspots,
WiFi offloading is also a practical mechanism design problem. Therefore, effectively leverag-
ing third-party WiFi capacity requires the combination of both information technology and
economic theory, which is in the spirit of designing smart markets (Bichler et al. 2010). Be-
cause WiFi capacity is a type of product with quite standardized characteristics, competitive
bidding should be a better way to select the lowest cost bidder than negotiations.*

In the present study, we aim to model and solve the optimal procurement auction of third-
party WiFi capacity. Because WiFi networks usually have a more limited range than cellular
resources, the range of a cellular tower should be partitioned into several WiFi regions. The
cellular capacity can serve data traffic in any WiFi region, whereas WiFi networks can serve
only local traffic. However, the procurement auction design is not equivalent to running one
local auction in each WiFi region because of the presence of the cellular resource. Buying
more resources from one local WiFi hotspot frees up more cellular capacity to serve demand
in other WiF1i regions, thereby creating an inter-region competition. On the other hand, the
procurement auction design is not equivalent to one global auction either where hotspots in
all WiF'i regions participate in one auction. This is because implementing a global auction
may not always be feasible: WiFi capacity in one region cannot be transferred to other
regions. The inflexibility of WiFi capacity causes difficulty for implementing a completely
global auction when regions with heavy mobile traffic have insufficient WiFi capacity and

those with light mobile traffic have excessive WiFi capacity.

4See for example, Bajari et al. (2009), who considered several determinants that may influence the choice
of auctions versus negotiations. For complex projects, auctions may stifle communication between the buyer
and the contractor. Clearly, WiFi capacity satisfies the standard assumption of well-defined products in the
auction literature.



We find that the optimal mechanism is equivalent to an integration of one global auction
which includes hotspots from an endogeneously determined set of WiFi regions and one local
auction on each of the rest of the WiFi regions. This integration of global and local auctions is
both theoretically interesting and practically important. It is the consequence of two unique
features of procuring WiFi capacity for mobile traffic offloading: 1) the coupling of local
auction because of the existence of the more flexible cellular capacity; 2) the heterogeneity
in terms of both the demand for mobile bandwidth and the supply of WiFi capacity in
different WiFi regions. To implement the optimal mechanism, we also provide an efficient
algorithm whose computation complexity is of the order of the number of WiFi regions.

The insights from the present paper apply more generally to a class of procurement
auction problems. The key issue in the procurement of WiFi capacity is to design the optimal
auction mechanism in the presence of product flexibility and information asymmetry between
suppliers (i.e., WiFi hotspots) and the downstream firm (i.e., the cellular service provider).
This procurement problem in the wireless industry is an example of a general setting where
(1) the downstream firm owns product-flexible in-house capacity that can be used for multiple
products; (2) the product-flexible capacity is limited, and the firm needs to procure products
from multiple upstream suppliers; and (3) each supplier is specialized and can produce only
one product. Given the limitation of product-flexible capacity (in-house capacity) and the
information asymmetry between the downstream firm and the suppliers, the downstream
firm needs to solve the complex problem of designing an optimal procurement auction. This
procurement scenario is common when companies are investing in product-flexible capacity
that entails the ability to produce multiple products with the same capacity, and the ability
to reallocate capacity between products (Goyal and Netessine 2011). Many manufacturing
and service companies use flexible capacity to hedge against uncertainty in future demand
(Fine and Freund 1990; Van Mieghem 1998).5

It should be noted that we have abstracted away the capacity problem of the broadband.

5In the automotive industry, the plants for most of the automobile companies are much more flexible
than before: Ford’s Rouge Plant can manufacture nine different products (Goyal and Netessine 2011).



Our key argument is that broadband technology is fundamentally different from cellular tech-
nology in terms of capacity constraints. First, broadband technology has advanced faster
than cellular technology in past decades, and currently increasing broadband capacity is
much cheaper than increasing cellular capacity. Unlike fiber optics in the case of broadband
capacity, cellular capacity is inherently and technically constrained by radio spectrum ca-
pacity. Second, even if significant advances in the cellular technologies may take place in
a near future, the cellular service providers still need to worry much about the traffic be-
cause of various regulatory constraints. We elaborate these differences between broadband

technology and cellular technology in Online Appendix C.

2 Literature Review

The technology aspect and implementation of this study are clearly related to the vast liter-
ature in computer science on mobile data offloading (Balasubramanian et al. 2010; losifidis
et al. 2015; Dong et al. 2014). We refer interested readers to Aijaz et al. (2013) for an
overview of the technical and business perspectives of mobile data offloading and to Kang
et al. (2014) for a discussion on mobile data offloading through third-party WiFi hotspots.
The theoretical aspect of the present study is mostly related to two streams of literature,
optimal auction design and supply chain management, which we will review in more detail.

In many procurement situations, the buyer cares about other attributes in addition to
price when evaluating the submitted bids. Dasgupta and Spulber (1990) extended the stan-
dard fixed quantity auction and studied a quantity auction that allows the quantity of goods
purchased to be endogenously determined by the submitted bids. In a multi-attribute scor-
ing auction, suppliers submit multidimensional bids, and the contract is awarded to the
supplier who submitted the bid with the highest score according to a scoring rule. Che
(1993) developed a scoring procurement auction in which suppliers bid on two dimensions of

the good. This scoring auction allows only sole sourcing. However, offloading data traffic to



multiple WiFi hotspots is naturally done in our procurement setting. Duenyas et al. (2013)
showed that a simple version of the open-descending auction can implement the optimal
procurement mechanism for a newsvendor problem. The model in the present study differs
from such auctions because of the unique challenge in our application setting.

Much of the literature on supply chain management has focused on scenarios where
adding product-flexible capacity is beneficial (Goyal and Netessine 2011). Janakiraman
et al. (2014) considered a firm that produces multiple products each period, using a shared
resource with limited capacity, in a periodically reviewed stochastic inventory model. A
natural question is, with limitations on product-flexible capacity, how should a downstream
firm design its procurement auction mechanism. In the present study, we introduce an
auction design problem with asymmetric information in the presence of product-flexible
capacity. The downstream firm procures capacity from the suppliers to optimally combine
with its in-house capacity to produce different products. In this process, the downstream
firm makes the following decisions: How to allocate its product-flexible capacity to produce
different products? How much quantity should be procured from each supplier? What
is the corresponding payment scheme for each supplier? Our theoretical analysis provides
insights to these questions in the context of the telecommunication industry and complement
the existing literature on product line designs when the product-flexible capacity is limited.
Netessine et al. (2002) analytically characterized the critical effects of increasing demand
correlation between products on the flexible capacity decisions. We also find that the demand
correlation as well as the level of in-house product-flexible capacity plays a crucial role in
the optimal design of the procurement mechanism. When the demand is highly positively
correlated or when the in-house product-flexible capacity is sufficiently large, the optimal
procurement mechanism simplifies to a global auction including all upstream suppliers; but

in general, it is equivalent to an integration of one global auction and multiple local auctions.



3 Model

3.1 Model Setup

A cellular network provides service to its customers who demand bandwidth. We think of
the packets requested by the consumers as being serviced in a queuing system. The expected
waiting time a typical customer experiences can be written as W (u) where p is the service
capacity. Clearly, W (u) should be decreasing in p and be bounded below. We further make

the technical assumption that W (u) is twice differentiable and is strictly convex in p:

dW <0 d*w -0
dp Todp? '

6 In

This is a mild technical assumption that is satisfied, for example, by an M /M /c queue.
the special case of an M/M/1 queue, as is assumed in Cheng et al. (2011), W (u) is simply
Wi(n) = ﬁ where \ is the customer demand rate.

Given the expected waiting time, the cellular service provider incurs a cost of y (W),
which is a strictly increasing function of W. To capture the rapidly rising cost of service
degradation due to customers’ increased expected waiting times (e.g., dissatisfied customers,
or churn), we assume that the function y(-) is convex. As a special case, Cachon and Feldman
(2011) assumed the waiting cost is a linear function of W. For convenience, we refer to the
composition of x(-) and W(-) as w(pu) = x(W(w)). It is straightforward to show that w(pu)
is strictly decreasing and strictly convex in j.”

Given the unprecedented growth rate of mobile data demand and the high cost associated
with congestion, the cellular network is interested in procuring spare resources from third-
party WiFi hotspots. Although both can be used to meet the user demand, cellular resources

and WiFi resources have different spatial coverages. In suburban areas, a typical cellular

base station covers 1-2 miles (2-3 km) and in dense urban areas, it may cover one-fourth

SFor the proof, please refer to Lemma 1 in Online Appendix A.
2
W' (1) = X' (W) - W' (1) < 0, w” (1) = X" (W) (W' ()" + x'(W)W" () > 0.



to one-half mile (400-800 m). A typical WiFi network has a range of 120 feet (32 m)
indoors and 300 feet (95 m) outdoors.® To model this unique feature of bandwidth supply,
we partition a cell sector into several WiFi regions so that WiFi hotspots within the same
region are relatively close together. In particular, we assume the cell sector can be divided
into M WiFi regions.” Cellular resources can serve traffic in any region m, whereas WiFi
hotspots in region m can only serve local traffic. A unique challenge in the procurement
auction is that the longer range cellular resource introduces coupling between the shorter
range WiFi hotspots. The procurement problem in one WiFi region is not independent of
the procurement problem in another region, because purchasing more WiFi capacity from a
local WiFi hotspot in one region frees up more cellular capacity that can be used to serve
the demand in another region.

Serving mobile demand for the cellular network provider incurs cost to a hotspot which
differs among hotspots. We assume the cost function for hotspot ¢ to provide capacity @ to

the cellular network is

Q
C(Q,0:) = / c(q,0;)dg,i=1,2,--- N.
0

where ¢(q,0;) > 0 is the marginal cost function for hotspot i, and 6; reflects each hotspot’s
private information about the cost of bandwidth provision which differs among different
hotspots. In reality, the private information 6; can be interpreted as each hotspot’s sensitivity
to its WiFi congestion rate. For example, some hotspots, like coffee shops, might be more
sensitive to their WiFi congestion because some customers go there primarily for their WiFi
services, while other hotspots, like restaurants, might be less sensitive. We assume ¢,(q, 0;) >

0 to capture the fact that the marginal cost of providing capacity for each hotspot increases

8See http://en.wikipedia.org/wiki/Wifi, and http://en.wikipedia.org/wiki/Cell_site.

9For example, one can generate regions by clustering the WiFi hotspots using k-means method. Note
that for simplicity, we assume that cellular capacity can be reallocated seamlessly from one WiFi region to
another. In practice, some cellular capacity can be redirected (e.g., core processing for the base station),
and some capacity cannot be redirected (e.g., radio capacity for directional antennas — these cover only a
certain direction and angular range).



as more capacity is provided to the cellular network. Following previous literature (Dasgupta
and Spulber 1990), we also assume that the marginal cost is increasing and convex in the cost
parameter, ¢y > 0, cpp > 0, and that cp > 0. Hotspots’ cost parameters are independently
and identically distributed with a continuously differentiable cumulative distribution function
F(+) defined on [, ] which is common knowledge. We further assume H(0) = F()/F'(0) is
an increasing function of # which is satisfied by common distribution functions such as the
uniform distribution.

To model potential revenue sharing between a hotspot and its Internet Service Provider
(ISP), we assume that a hotspot gets a proportion (& € (0,1)) of the payment from the
cellular service provider for providing WiFi capacity. The other proportion (1 — &) goes to
the ISP. We define o = &' for notational convenience. Finally, let 8* be the threshold cost
parameter chosen by the cellular service provider so that any hotspot with # > * will not
participate in the procurement auction.

To determine the optimal auction mechanism, we first need to determine the value of
procuring WiFi capacity. Let y,, be the amount of WiFi capacity the cellular service provider
purchased from hotspots in region m, and let y = an\le Ym be the total WiFi capacity pur-
chased in all regions. Because congestion costs in different regions naturally involve different
customers at any given time, a cost function that is separable across regions captures such
cost structure. This is also consistent with the tradition in economics of using additive utili-
tarian social welfare function which is also widely used in the information systems literature.
In particular, we model the congestion cost of each region, w,,, as a region-specific function
of Y+ i, form =1,--- . M. For example, different regions might have a different customer
demand rate and the cellular service provider might also place different weights in different
regions. The total congestion cost is then Zn]‘le Win (um + ym) where pi,,, is the amount of

cellular capacity allocated to region m, and the congestion cost minimization problem can



be written as

M
J(yl T ,?/M) = Minulwqu Z Wm (Mm + ym) (1)
m=1
M
s.t. Z,um <y fy = 0, for m =1,2, ... M.
m=1
The cellular service provider purchases WiFi capacity (y;,--- ,ya) for the M regions

from hotspots in these regions to supplement its cellular capacity.!® The objective is to
minimize the total cost, including that for congestion J(y1,--- ,yas) and for procurement,
which includes both the actual costs of hotspots providing WiFi resource and the information
rent due to information asymmetry. The cellular service provider follows a two-step decision
procedure: In the first stage, it purchases WiFi capacity from hotspots in different regions.

In the second stage, the cellular service provider allocates cellular resources across regions.

3.2 Global Auction

In this section, we assume the non-negativity constraints on u,, are not binding and call
the resulting auction mechanism global auction. We will see later that this is an important

building block of the actual optimal mechanism.

Proposition 1 Under global auction, the optimal cellular resource allocation is given by

[ = Om (‘I’(y + u)) ~ Um

10Tt is worth noting that our problem can be regarded as a sub-problem of a capacity expansion project
for a cellular service provider. Given a cellular sector, the cellular service provider can compare the option of
procuring WiF1i capacity or building a new cell tower, or not to seek any capacity expansion. By evaluating
and comparing the overall benefits (i.e., the difference between the reduced congestion cost and the cost
of capacity expansion, whether through WiFi procurement or building cell tower), the service provider can
select the best action. We discuss this more formally in Section 4. Intuitively, WiFi procurement will be
preferred in situations where (i) the existing tower capacity is not terribly insufficient given the customer
demand; or (ii) there are plenty of inexpensive WiFi hotspots in the regions. On the other hand, in regions
where the demand or the growth of demand is enormous and the existing cellular capacity is way insufficient,
building a new cell tower might be more cost-effective than procuring WiFi capacity from hotspots.

10



where ¢, (+) is the inverse of W () and V(-) is the inverse of ®(-) = Z%zl ¢m( ). The

optimal congestion cost is

J(y) = zj‘ijwm (cbm(\lf(y + ,u)))

Moreover, J(y) is decreasing and conver.

Proof. The first-order condition implies that there exists a Lagrange multiplier for the

cellular capacity constraint v > 0 such that
W (Y + i) +v =0, ¥Ym =1,2,--- M.

Hence,

anzﬁﬁm(—’/)—yma

where ¢,, is guaranteed to exist due to the strict convexity of w,,(-). The cellular capacity

constraint is binding at the optimal solution, which implies

S
S

uzi% Z(cbm(—V)—ym)ZZ%(—V)—?J:@(—V)—?J-

m=1 m=1

Because wy,(+) is strictly convex and ¢, (w/,(z)) = , we see that ¢,, is monotone increas-

ing:

Hence, ®(z) is also monotone increasing:

() =Y ¢ (z) >0,

m=1

which guarantees the existence of the inverse of ®(-), which is denoted by ¥(-).

Therefore, v = —W(y + p) and the claim follows. Because J(yi,--- ,yu) is a function of

11



Y1, -+ ,yn only through their sum, y, with slight abuse of notation, we write it simply as
J(y) when none of the non-negativity constraint is binding.
Now, we show that J(y) is decreasing and convex in y. Denote z = y + p so that

®(—v) =z and ¥(z) = —v. Because ¥(P(x)) = x, we have

o) = Y, (% (wz))) & (V(=)) '(2)

= U(z) :”::V <m0, "
7w = Ve = (Y1) 0

Therefore, J(y) is decreasing and convex in y. m

For this optimal allocation to be feasible, we need u;, > 0, or equivalently,

u2q><win(ym)>—y, Vm=1,--- M. (2)

As we stated at the beginning of this section, we assume the non-negativity constraints of
iy are non-binding, hence the inequality (2) is always satisfied.

Intuitively, when condition (2) is satisfied, WiFi resource in one region is a perfect substi-
tute of WiFi resource in another region, from the perspective of the cellular service provider.
Given our solution for the second-stage problem, the first-stage problem is a direct revelation
game in which hotspots truthfully report their types in the Bayesian Nash equilibrium. We
adopt the notational convention of writing _; = (61, ...,60;_1, 6,41, ...,0x). The procurement

auction can be implemented via a direct revelation mechanism where

12



e The cellular service provider announces a payment-bandwidth schedule P; = P(6;,6_;),

and a bandwidth allocation schedule ¢; = Q (0;,0_,);
e Hotspot i truthfully reports the private cost parameter 0;, given P(6;,0_;) and Q (6;,0_;);

e Hotspot ¢ provides bandwidth ¢; = @ (6;,0_;) to the cellular service provider and its

revenue is aP(0;,0_;).

By selling its spare bandwidth, a hotspot is essentially delivering a certain quantity of
requested data for the cellular service provider. Hence, we simply refer to Q (0;,0_;) as
the quantity schedule from now on. To implement the scheme, the cellular service provider
can periodically run the procurement auction to obtain WiFi capacity from each region
and determines the optimal allocation of cellular capacity across regions. Alternatively, the
service provider can re-run the auction whenever the demand rates or the rate distribution
across WiF1i regions change significantly. As long as the realized demand rates are consistent
with the demand rates used to compute the optimal auction rule, the operation is optimal.
From individual customers perspective, he or she may not even know how his/her requested
data is delivered (cellular tower or WiFi hotspot). It is not technologically difficult to
automatically select the “best” (from cellular service provider’s financial perspective) source
of capacity for the customer data request, which may not necessarily be the geographically
closest hotspot. Current technology already can seamlessly switch between cellular towers
and WiFi hotspots although the criteria of switching is often purely technological.

In the case of global auction, the expected gain from procuring a total of y Wi-Fi capacity
is J(0) — J(y), which is increasing and concave in y.

To describe the optimal global auction mechanism, we first define v; as

v, = ac(0,0;) + acy(0,0,)H(6;),Vi=1,--- |N

13



and impose the following technical condition

—W(p) > min{y,, vy, -+, ux}-

Note that the function —W(q) can be interpreted as the marginal value of WiFi capacity
when the total acquired WiFi capacity is q. Hence, this condition ensures that the marginal
benefit of procuring an infinitesimal amount of WiFi capacity is larger than the hotspot with
the least (virtual) marginal cost of providing WiFi capacity. Without this condition, WiFi
procurement auction is never optimal and should not be considered by the cellular service
provider at all.

The following proposition characterizes the optimal global auction mechanism for the

cellular service provider and is an application of Dasgupta and Spulber (1990).

Proposition 2 (Dasgupta and Spulber) In the optimal direct revelation mechanism, all
hotspots truthfully announce their cost parameters 6. The optimal procurement quantity

schedule q¢f = Q* (0;,0_;), for i =1,2,...N is determined by

N
— (,u + Z q;‘) = ac(q],0;) + aco(q, 0;)H(0;).

Jj=1

The optimal payment schedule P; = P*(0;,0_;), fori=1,2,...N is given by:

P=a <C(q;, 0;) + /6* Co(Q*(0,0_,), e)de).

i

The cellular service provider’s expected gain from the procurement auction is

J(0) ~E|J (Z q:) +a) Clg,0) + aZ@(q:,ei)H(ei)]

The intuition of the above proposition is that the “virtual” marginal costs must be

equalized across all hotspots in all regions at the optimal, which determines the optimal

14



quantity functions Qz(g), i=1,---,N. Because ¢y > 0, cg9 > 0, and H(#) is increasing in
0, it is easy to verify that (1) ¢ is decreasing in 6;; that (2) ¢} is increasing in 6; for j # i;
and that (3) Zjvzl q; is decreasing in ;.

In the direct revelation game, hotspot ¢ reports its true cost parameter 6;. The ca-
pacity it needs to provide is ¢; = Q* (0;,0_;), and its payment is P, = P*(6;,0_;). This
optimal mechanism is a global auction including all hotspots from different regions. Note
that launching separate local auctions within each region is not optimal because running
multiple local auctions essentially reduces competition among hotspots which could be ex-
ploited by flexibly allocating cellular resources among regions. In equilibrium, the virtual
marginal costs ¢(q;,0;) + co(qi, 0;)H(6;) are equalized across hotspots in different regions,
and the marginal benefit of procuring WiFi capacity is also equalized across regions. The
global auction effectively creates perfect inter-region competition among hotspots which is
particularly important when intra-region competition is limited in some regions (e.g., regions
with few hotspots).

Based on Proposition 1 and Proposition 2, we design the following procedure to calculate

the optimal global auction.

e Invite each of the n hotspots to report its cost parameter 6. Denote the submitted cost

parameters as {0;,0s,--- ,0n}.

e Define the map ¢ : © — R through the following steps:

— Given v > 0 and for each ¢ = 1,2,--- , N, define ¢;(v) as

0 ifv <y, =ac0,0;) + acy(0,6;,)H(6;);
g(V) =13 oo ifv>0p=lim, o ac(z, ;) + ace(z, 0;)H(6;);

ity <v <y

15



where z* is the solution to the equation
ac(zx,0;) + ace(x,0;,)H(0;) = v,

in the interval (0, 00). Because the left-hand-side of the equation is increasing in
z and v € (v;,7;), ©* uniquely exists. Given a value of v € (v;, ;), we can easily
solve for z* using bisection in an appropriately constructed interval [0, g]. It’s

also easy to see that the non-negative function g;(v) is (weakly) increasing in v.

Let ¢* be the unique solution to the following equation:
N
Zgi (—=¥(p+q)=q
i=1

The uniqueness follows directly from the monotonicity of Zfil i (=Y (u+q)—q.

To see the existence of ¢*, note that by our technical assumption, we have

Zi]\il i (—U(p)) > 0. Letg = sz\il g: (—¥(u)) > 0. Because Zf\il 9 (U (+q))

is (weakly) decreasing in ¢, we have

Z 9i (=¥ (u+7q) < Zgz- (=¥ (n) =q.

By continuity, ¢* exists and we can easily solve for ¢* using bisection in the interval
(0,9).

Let §= (a1, g2 san) = (0 (=¥ (n+ 7)), 92(=¥(n +¢7)), -+ gn (=¥ (1 + 7))
Clearly, > . ¢; = ¢*. By the definition of g;(v), for any i such that ¢; = ¢;(—V(u+

q*)) > 0, we have

In other words, the optimality condition of Proposition 2 is satisfied.
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e Define payment plan P; as
0*
0;

e Hotspot ¢ will provide capacity ¢; and receive payment F;.

e The expected gain of the cellular service provider is

J(0) —E | J(¢") + Z C(gi0;) + a Z Co(qi, Qi)H(Qi)]

=1 =1

3.3 Integrating Global and Local Auctions, M = 2

So far, we have assumed that p;, > 0 for all m. We call this the feasibility condition and it

can be written as

N

0> cb(%( DNe (91.,9*1-))) =S Q (0,60-), Ym =1, M.

1€ Em =1

where F,, is the set of participating hotspots in region m. Under the feasibility condition, the
cellular capacity p is sufficiently large for all regions under all realizations of hotspot supply
(i.e., 01,--- ,0y). Clearly, this is a very restrictive assumption when the cellular capacity is
only moderate. In a realistic environment, the feasibility condition will most likely hold for
some realizations of cost parameters (6;,60_;) but not for others.

In this section, we relax the assumption that p,, > 0 is non-binding when M = 2. Once
we fully solve the optimal procurement auction design problem with M = 2, we will solve
the most general case with M > 2 in Section 3.4.

To further illustrate the feasibility condition, we depict two illustrating examples in Figure
1 based on a simulation.!! We assume that there are two WiFi regions (M = 2), and that

each region has four hotspots (N = 8). The congestion cost functions for the cellular service

HFor more details on the simulation, please refer to Online Appendix B.

17



provider, and WiFi hotspots are wy, (ttm + Ym) = m and C(q,0;) = (3 +6;) ¢%,
where the private cost parameters for hotspots, (61, - ,0s), is independently drawn from
a uniform distribution U[0,1]. In Figure 1, the X-axis corresponds to the demand rate in

region 1, and the Y-axis corresponds to the demand rate in region 2.

e A blue x indicates that the feasibility condition is always satisfied;
e A black star indicates that the feasibility condition is always violated;

e A red dot indicates that the feasibility condition is violated for some realizations of

cost parameters (6;,60_;) but not for others.

T LD
X Always Feasible d
* Not Always Feasible |,
% Always Infeasible
Cuts s,

o L N
X Always Feasible d
* Not Always Feasible [»
* Always Infeasible |
T, ..: .

Figure 1: Illustration of the feasibility condition. The cellular capacity, u, is set to be 0.4
in the left panel and 0.2 in the right panel. The feasibility condition is more likely to be
violated when the demands are unbalanced or when g is small.

When the feasibility condition is always satisfied (the blue x), even though a hotspot
in region 1 cannot directly serve customers in region 2, by serving customers in region 1,
it effectively frees up some cellular capacity which can then be used to serve customers
in region 2. Thus, a single global auction to obtain bandwidth from all hotspots should
outperform multiple local auctions due to increased competition among hotspots. As a
result, the optimal procurement mechanism should be the global auction we discussed so

far. When the feasibility condition is always violated (the black stars), all cellular resources
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should be allocated to the region experiencing a surge in demand due to the insufficient
amount of cellular capacity. In this case, running two local auctions is optimal.

We focus on the non-trivial scenario (i.e., the red dots) where the feasibility condition
is violated for some realizations of cost parameters but not for others. In this more general
scenario, the value of procuring (yi,--- ,yy) WiFi capacity from the M regions depends

not only on the total procured WiFi capacity y, but also on its distribution across regions.

Correspondingly, we denote the value of procuring (y1,--- ,yy) WiFi capacity as J(0) —
J(y1,- -+ ,yn) where J(yi, -+ ,yn) is the minimized congestion cost defined in (1). Given
(y1,- - ,Ym), let fi,, be the optimal amount of cellular capacity allocated to region m ignoring

all the non-negativity constraint on p; (i.e., in the global auction). From Proposition 1, we
know i, = ¢, (‘I’(y + M)) ~ Ym-

Intuitively, the optimal auction should be designed so that pu,, coincides with ji,, when-
ever fi,, is non-negative under some realization of (6y,--- ,6x). On the other hand, whenever
fim is negative under other realizations of (01, --- ,0y), the optimal quantity schedule should
be able to adjust the procurement to take into account the corner solution in the second-
stage optimization problem of (1). In other words, the optimal quantity schedule is likely a
non-smooth function of (6, --- ,0y) with many segments. However, as long as the quantity
schedule is non-increasing in hotspot type, we can find a truth-telling mechanism to imple-
ment it. Fortunately, as we will show in the proof of our next result, the proposed optimal
quantity schedule is continuous everywhere, which essentially upgrades local monotonicity
into global monotonicity.

The following proposition gives the optimal quantity schedule and payment function.

Proposition 3 The optimal quantity ¢i* = Q*(0;,0_;) is determined by

N
Jj=1

19



if the resulting iy and fiy are both non-negative, and is determined by

_w;n (Mlﬂm>0 + Z q;*) - ac (qu*7 91) + aCG(Q:*7 01>H(91>7VZ € Emam = 1’ 2 (4)

.]GETYL

otherwise, where 1, ¢ is the indicator function for i, > 0.

The optimal payment schedule P;*(0;,0_;), fori=1,2,...n, is given by:

0*

P (6;,0_;) = a(C (@ 0)+ | Cy(Qr(0,0-,),0) de). (5)

0;

Proof. The revelation principle implies that we only need to focus on direct mechanisms.
Hence, we only need to find the quantity schedule Q(6;,60_;) that maximizes the service
provider’s gain from the procurement auction, taking into account the information rent
required for truth telling.

Our proof has three steps. First, given a quantity schedule, we establish the corresponding
payment rule that is necessary for incentive compatibility. Second, we optimally choose the
quantity schedule. Third, we verify that the proposed quantity schedule is non-increasing
which ensures that the payment rule is not only necessary but also sufficient!? for incentive

compatibility.

Step 1

The expected profit of hotspot provider ¢ with cost parameter # reporting parameter 6’ is

x(0,0) = E_,[aP(#,0_,) — C(Q(H,0.,),0)].

12For proof, please see page 14 of Dasgupta and Spulber (1990).
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Incentive compatibility implies that w(0,0) —7(0,0") > w(6,0)—n(¢',0") > =(¢',0)—7(6',6'),

or equivalently,

E_[C(Q6,0-:),0)—C(Q(0,0,),0)] > 7(8,0)—=(¢,¢') > E_,[C(Q(H,6-.),0') —C(Q(8,0_),0)].

Let w(0) = 7(6,0). Dividing both sides by # — 6" and taking limits as 8’ — 6, we have

dm ()
do

= —E—z’ [C@ (Q(e, ‘9_1'>7 9)] ’

Integrating both sides from 6; to 6*, and using the fact that 7(6*) = 0, we have

7(0,) = /: E_[Cs(Q(0,0_,),0)]d6 = E_, [/: Cg(Q(Q,Q_i),Q)dG]

Hence, the expected payment a hotspot provider with cost parameter 6; will receive must

satisfy
o0
E_[aP(6;,0_)] =E_, [C(Q(ei,e_a,ei) + / @(Q(e,e_i),e)de}
0;

and the claim on P/*(6;,60_;) follows.

21



Step 2

We now prove the optimal quantity schedule. From the buyer’s perspective, the expected

payment to any hotspot provider is

E/[E_[P(6,,6_)]] = aE[C(Q(6,.6_).6)] + /e ( /9 Ei[Og(Q(Q,GZ-),Q)]d@)dF(ei)

0*

:a]E[C(Q(Gi,Q,i),Hi)} + «

F(ez)/e *Efi [C’@(Q((‘),Gi),e)}d(?]

i [

0*

F(0,E_,[Co(Q(0:,0-,),6:)] db;

0*

E_i[F(6:)Co(Q(0:,0_,),6,)] db;

—

— GE[C(Q6,6-).6)] + a

0*

— E[C(Q(6:,0-).6)] + aEi[ Cg(Q(ei,ei),ei)H(e)dF(ei)]

= aE[C(Q(6:,0-.),6:) + Co(Q(6:,0-.),6,)H(6,)].

\Q\

Let ¢; = Q(0;,0_;). The cellular service provider’s total expected cost minimization
problem can now be written as the following optimization problem:
M N N
min II = E Z W (Mm + ym) + Z C(% 9i) +a Z C@(qia ei)H(ei)] )

gii=1,,N , ,
fim,m=1,- .M m=1 i=1 i=1

M
AT
m=1

”mzoavm:1727"' >Ma

Ym = Z qi>vm:1727"' >M7

1€ Em

where the expectation E[-| is taken over (6;,60s,--- ,0y) and the optimization is taken over

-, -,

N + M functions of (61,0s,---,0n): ¢;(0) and p,,(0),Vi=1,--- Nym=1,--- M.
The degenerated structure of this variational calculus problem allows us to solve the

problem through pointwise optimization over the space of ©. Based on this observation, we
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further simplify the problem by dividing the space of © into two areas,

@1 = {(017027”' 79N)

ﬂl Z 0,,&2 Z 0}7@2 = {(01792a”' 7€N)|ﬂ1 < 0 or ,&/2 < O}

Ifd e ©1, the non-negativity conditions of u,, are not binding. Hence, the optimization
problem is equivalent to the one studied in Proposition 1. Therefore, the quantity schedule
from Proposition 1 is optimal when g e ©;.

If6 e ©,, then one of the non-negativity constraints must be binding at the optimal.
Without loss of generality, assume (uf, u5) = (1, 0) at the optimal. The pointwise optimiza-

tion problem can be simplified as

N N
min T = wi(p+y1) +wa(n) +a ) Clai i) +a ) Colg:, 0:)H(6;),

q17”. 7qN
=1 i=1

= (it m) +a Y Clab) +a Y Cola, 0 H(,))

S SIS
—|—<w1 (y2) + « Z C(q;,0;) + « Z Co(qi, 9i>H<9i>)
i€Fo i€l

s.t. Ym = Z ¢, Vm =1,2.

1€Em

which is the same as that of designing two separate local auctions. Therefore, with 6 € ©,,
the optimal mechanism is equivalent to holding two separate local auctions, with all cellular

resources allocated to one of the regions.

Step 3

Finally, to ensure that the payment schedule is not only necessary but also sufficient for
incentive compatibility, we need to verify that E_;[Q:*(6;,6_;)] is non-increasing in 6;. It
suffices to show that ¢* = Q*(6;,0_;) is decreasing in 6; given any 6_;. Notice that by our
assumptions on hotspot cost structure and H(6), ¢* is decreasing within the region of 6;
where either the global auction is optimal or the local auction is optimal. The only possible

violation of the monotonicity property is when the value of 6; crosses some threshold below
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(above) which local (global) is optimal or vice versa. Clearly, if ¢/* is continuous at such
thresholds, local monotonicity implies global monotonicity.!?

To establish continuity, we first denote the region to which hotspot ¢ belongs as region 1
and note that global auction is chosen if and only if ji; = ¢ (\I/(y +,u)) —y; > 0and i1 < p,
or equivalently, —wi(y1) > —VU(y + p) and —wi(y1 + 1) < —V(y + ). Define the threshold
0; as the value of 6; such that —w/(y;) = —¥(y + ) = 7 and the threshold 6; as the value
of 0; such that —w/(y; + p) = —U(y 4 p) = m. Clearly, 6; # 6; due to the strict convexity

of wi(-). Denote the solution to the following equation by ¢;,
m = ac(q;™, 0;) + aco(q;™, 0;) H(6;),
and the solution to the following equation by ¢;,
m = ac(q™,0;) + ace(q™, 0;)H(0;).

Let € > 0 be small enough. Then, for any 6 € (6; — €, 0; +€), ¢** is either the solution to the
equation

—U (n+y) = ac(q™, b;) + aco(q;™, 0;)H(6;) (6)

or the solution to the equation
—wj (yl) = ac(q;", 0;) + ace(q;™, 0:) H(0:) (7)

Because the left-hand-side of both equation (6) and equation (7) equal 7 at 6; = 6;, and
that the right-hand-side of both equations is the same continuous function of #;, we have
limy 5 ¢ =lim, 5, ¢ = ¢;- Hence, ¢;* is continuous at 0;. Similarly, we can show that

q* is also continuous at 6;. Therefore, ¢/ is everywhere continuous and is thus decreasing

13In Lemma 2 of Online Appendix A, we prove a stronger result that a continuous and locally decreasing
function is globally decreasing, which is sufficient for the case of any M > 2.
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in its range. =

As we noted, the above auction mechanism has a nice economic interpretation as the
integration of global auction and local auctions. Whenever the feasibility condition is satis-
fied, the mechanism is equivalent to the optimal mechanism described in Proposition 1 which
is essentially a global auction that includes all hotspots from both regions. Whenever the
feasibility condition is violated, the optimal mechanism is to allocate all cellular capacity to
one region and to organize one local auction for each region. This integration of global and
local auctions in the optimal procurement auction is the consequence of two unique features
of procuring WiFi capacity for mobile traffic offloading: 1) the coupling of local auction
because of the existence of the more flexible cellular capacity; and 2) the heterogeneity of
demand for mobile bandwidth and supply of WiFi capacity in different regions.

It should be clarified, however, that there is only one auction, and the choice between
running a global auction and running two local auctions is endogeneously determined by the
auctioneer based on the realization of (0, -+ ,60y). From the perspective of a hotspot, ex
ante, it does not know whether it will participate in a global auction or a local auction.
It does not need to know. What matters to a hotspot is only the payment and quantity
schedule designed by the auctioneer. Based on these schedules and its expectation of the
types of all other hotspots, it is optimal for the hotspot to truthfully report its type by our

mechanism design.

3.4 Integrating Global and Local Auctions, M > 2

With more than two regions, the basic idea of integrating multiple local auctions and one
global auction remains the same, although the optimal grouping of WiFi regions becomes
more complicated. We denote by R, the set of regions where cellular capacity will be
allocated (i.e., regions that participate in global auction) and denote by R; the set of regions
where cellular capacity will not be allocated (i.e., regions that participate in local auctions).

The optimal auction involves one local auction for each region in R; where no cellular resource
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will be allocated and one global auction for all regions in 2, where all cellular resource will
be allocated.

The key is to optimally divide the set of regions into R, and R;. Intuitively, whether
a region—say region m-—should be in R; or R, depends on whether the non-negativity
constraint p,,, > 0 will be binding or not if it participates in the global auction. But we
can evaluate whether p,,, > 0 only after we construct R, and R;. Because the number of
ways of dividing regions into R, and R; increases exponentially with the number of regions,
a brute-force approach of checking each possible division is practically infeasible. Hence, we
must find a division algorithm whose complexity is polynomial in the number of regions. To
achieve this goal, we first note in the following proposition that R, should be as large as

possible to achieve optimality.

Proposition 4 Given M > 2 and (61, -- ,0x), suppose there are two different schemes of
dividing the regions into global and local auctions, both of which lead to feasible allocation of
cellular capacity: If (Ry, R;) and (1:29, Rl) where Rg C Ry, then the optimal gain corresponding
to the auction design with (Ry, R;) is larger than the optimal gain corresponding to the auction

design with (Ry, R;).

Proof. We write down the optimal auction design problem with (R, R;) as

M N N
L I = > Wi (fn + Ym) + @Y Clgi 05) + Y Colgi, 0:)H(6;),
fimo =1, M m=1 i=1 i=1
s.1. Z lum S lua

meRy

fm > 0,Vm € Ry,

Hm = Ovvm € Rl7

Ym = Z %Avm: 1727”' 7M'

1€Em

Because ég C Ry, the optimal auction design problem with (ég,él) is the same as the

above problem except with the additional constraints that pu,, = 0, Vm € Rg\}?g. Clearly,
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the minimized total cost corresponding to (R, R;) should be smaller than the minimized
total cost corresponding to (R, ;). m

Given that we need to find the largest possible R, to achieve optimality, we clearly should
start with all of the regions—that is, R, = {1,---,M}. If doing this leads to infeasible
allocation of cellular capacity, we will have to shrink R, in some way. Intuitively, we should
exclude those regions with py, < 0 from R, to restore feasibility, which would naturally give
rise to a sequential procedure of constructing R, and R;. However, the main concern with
the sequential procedure is whether “exclusion” should be irreversible. In other words, if a
region is excluded from Ry, would it be beneficial to put it back into R, at some later steps
in this sequential procedure? Our next result shows that the answer is no. The key insight is
that if a region is in R; at some stage, then it will be in R; in later stages had it remained in
Ry, which justifies the irreversible shrinking of R, and guarantees the algorithm complexity
of the order of O(M).

To describe the procedure, we first introduce the notations for the k-subproblem. Let

Y. = Zme gk Ymk Where yp, . = Zie £ Qi and g, is determined by the following equation:
g m

—U (Vi + ) = ac(qi. ;) + aco (i, 0:)H(0;), Vi € | ) En.

Proposition 5 Given M > 2 and (61,--- ,0y), the optimal quantity schedule ¢* is given
by

—\I/<,LL + Z q}”) = ac(q™,0;) + ace(¢",0:)H(0;),Yi € E,,,m € R,

j€Em,meRy
—w),( Z ¢*) = ac(q™.0;) + ace(q,0:)H(0;),Vi € Ep,m € Ry
JEEm

where Ry and R; are constructed through the following iterative procedure:
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e Step 0: Let k = M, R;W ={1,2,--- ,M}, and RM = (.
o Step 1: If R* =0, let R, = R’; and R; = RF. Stop the procedure.

o Step 2: If R # 0, let ng“_l = Rﬁ and Rf‘l = RF U R*. Decrease k by 1 and repeat

Step 1.

The optimal payment schedule P, for i1 =1,2,..n is given by:

0*
P =a (0 @00+ [ oo cw) - (®)
0;

Proof. From the proof of Proposition 3, we know that the optimal mechanism is an inte-
gration of one global auction and at most M — 1 local auctions. With M > 2, the key is to
determine the optimal division of regions into R, and R;.

The first part of this proposition is a straightforward generalization of Proposition 3
and the proof is omitted. The second part offers an efficient algorithm for constructing the
optimal R, and R; with complexity of O(M).

The key to prove the effectiveness of this algorithm is to show that if a region is in R; at
some stage, then it will always be in R; in later stages. Therefore, at each stage, we should
shrink ngC by moving all of those regions in R* to Rf_l and none of those regions in R¥ to
Rf’l. In this way, we keep R, as large as possible (i.e., by not moving those regions in R¥)
while attempting to restore feasibility (i.e., by moving those regions in R* to R;).

Mathematically, we need to show that given t € R* and s # t, if we let R}~ = R\ {s},
then t € R*'. Note s could be in either R* or RE.

Consider the k-subproblem. The WiFi capacity procurement ¢; , = Q* (6;,60_;), is deter-
mined by:

—U(p+Yy) = ac(qin, 0;) + aco(Gik, 0:) H(0:), Vi € Upnerr B, 9)

where Y, = >

. - k_
leu'mER? Em qz’
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In the (k — 1)-subproblem, ¢; 1, is determined by the following equation:
_\I/(p, + Yk—l) = ac(qi7k_1, 01) —f— Ong(qi’k_l, QZ)H(QZ), VZ - UmeR’;*lEm; (10)

where Y,_; = Zieu o1 By Qik—1-

meERy

We first show that Y;_; < Yj by contradiction. Suppose Y;_1 > Y}, then —W(u + Yy) >
—W(u+ Yy—1) because ¥(-)" > 0. Hence, the right-hand-side of equation (9) is greater than
the right-hand-side of equation (10) for all i € Umequ E,.. But ac(q,0;) + ace(q, 0;)H(6;)

is increasing in g. Therefore, we must have g;, > qix—1, Vi € U, pr—1 By, which implies
g

Y, = Z Gk + Z Gike = Z Qik > Z Qik—1 = Yi_1.

1€Es e A1 En, ieUm k1 E., ieUm k1 En

me S S

Contradiction. Because Yj,_; < Y}, we immediately see that ¢, < ¢;r—1, Vi € Um€R§_1Em
which implies Ypmr < Ymi_1, ¥Ym € R’;_l.

Second, we show that py, , | < iy, o, Vm € R’;_l. To see this, notice that

P k-1 = Pm (‘I’(kaﬁ-u)) —Ymp—1 < Om (‘I’(Yk+ﬂ)) —Ymp—1 < O (‘I/(ch-i-ﬂ)) ~Ymk = Mok

where the first inequality is because ¢/, > 0, V" > 0 and Yj_; < Y}, and the second inequality
is because Yk < Y k—1-

Therefore, 7, < py, <0, or equivalently, ¢ € RFY m

4 Concluding Remarks

In the present study, we designed an optimal auction mechanism for WiFi procurement so
that cellular service providers can offload mobile data. The integration of both cellular and
WiFi resources significantly improves mobile bandwidth availability. A unique challenge in

this procurement auction is that the longer-range cellular resource introduces coupling among
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the shorter range WiFi hotspots. We solved for the optimal auction mechanism and show
that the optimal auction can be interpreted as an endogeneously determined combination of
a global auction and many local auctions.

The actual auctions and offloading to WiFi would need to be integrated with the policy
management infrastructure, which supplies some of the key variables in the auction valua-
tion: (1) the currently offered data traffic, (2) the capacity of each cell tower, and (3) the
structure of the congestion cost. The proposed procurement auction integrates all relevant
information into the supply chain through wireless networks. Our procurement mechanism
extends beyond the limits of service providers’ cellular resource to interconnect multiple
hotspots in different regions. The conventional data offloading is on the basis of the ac-
cess network discovery and selection function (ANDSF)! that processes static WiFi offload
policies. Recently, the intelligent mobile solution company, Tekelec, Inc., has developed its
Mobile Policy Gateway (MPG)' to implement complex WiFi offload policies. The Tekelec
MPG enables support for our smart data offloading based on the auction approach.

Our procurement auction design problem can be regarded as a sub-problem of a capacity
expansion project for a cellular service provider. Given a cellular sector, the cellular service
provider can compare the option of using WiFi capacity procurement or building a new
cell tower. By comparing the net gain (i.e., the difference between the reduced congestion
cost and the cost of capacity expansion, whether through WiFi procurement or building
tower), the service provider can select the one that yields higher net gain. In our model,
the benefit of using WiFi capacity procurement is the expected reduction of congestion
cost, which is given by E[J(0,---,0) — J(yi, -+ ,y3)], where y¥ is the optimal amount
of WiFi capacity procured in region m and J(yi,--- ,y},) is the corresponding congestion
cost defined in equation (1). The total payment to WiFi hotspots and the Internet ser-

vice provider is E [Zfil P;*(e,;,e_i)]. Therefore, the net gain from WiFi procurement is

14The purpose of the ANDSF is to assist user equipment to discover and select non-3GPP networks such
as WiFi and WiMax.

15See http://www.tekelec.com/2012-press-releases/tekelec-and-roke-partner-to-deliver-policyonthemobile-
solutions.aspx.
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E|J(0,---,0) = J(yi, - ,yi) — Som, Pr(6, H,i)]. To determine the optimal amount of
cellular capacity, we assume that the cost of increasing the cellular capacity from p to p+ po
is V' (1o), where V(+) is mostly likely discontinuous at 0 due to the fixed cost of building a
new cell tower. The minimized total cost from increasing cellular capacity is the optimized

objective of the following problem:

K (o) = min (V(Mo) L min Zwm fim )
> mi<ptpo ™

Let uf be the optimal p to the above problem. Then, the cellular service provider prefers (1)
to add a cellular capacity if K () < min {J(o, 0L B[ i) N, P (6:,0.,)] };
(2) to procure bandwidth from WiFi hotspots if E [J( i) N P60 )} <
min{J(0,---,0), K(1)}; and (3) to seek no additional capacity otherwise.

The model in the present study can also be useful for certain supply chain problems.
Consider a firm that produces multiple products using a shared resource (in-house capacity)
that is common to products 1 and 2. Because of capacity limitations, the firm also needs to
procure the products from different suppliers. Supplier 1 only produces product 1; suppliers
2, 3, and 4 only produce product 2. Because the in-house capacity is a shared resource
that can be used for all products, it is suboptimal to decompose this supply chain problem
into two independent procurement problems. Our theoretical model provides an auction
framework for the downstream firm to optimally integrate the upstream capacity with its
own product-flexible capacity.

We recognize several limitations in the present research. First, only one cellular service
provider is considered in our procurement auction. One direction for future research is to
extend our model to a setting with multiple cellular service providers. Second, we assumed
the marginal cost function of all hotspots can be approximated using a one-parameter func-
tion family. This is a simplifying assumption. It could be interesting to explore how multiple

dimensions of hotspot heterogeneity interact with the optimal auction design. Finally, our
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study focused on the supply-side reaction to congestion by assuming exogenous demand rates
to improve analytical tractability. As a future research direction, it is important to study the

demand-side reaction by estimating consumer response to congestion using empirical data.
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A Lemmas

Lemma 1 In an M/M/c queue, the expected waiting time is conver in service rate.

Proof. The expected waiting time of an M /M /c queue can be written as
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W==-f—
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where both A and b are constant with b < u. Clearly, W () is decreasing in p because
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For the convexity of W (), it suffices to show

d? 1 -0
d,u2 luc+1 _ b/l,c ’

which is equivalent to

(c(c+ 1)Mc71 — be(c — 1)uc72) (Mchl _ b,uc)2 < Q(MCH _ bMC) ((c+ 1)uc — bc,u"”l)2
& (cle+Dp—be(c=1))(p—>b) < 2((c+1)p— bc)2

& (c+ e+ 2)u* —2bc(c+2)u+b*(t+c) > 0.
bc )2+ bie
+1 c+1

S (c+1)(c+2)(n— -

Lemma 2 Let © € R be a closed interval and f : © — R be a function that is locally

decreasing, that is, V0 € ©, there exists € > 0 such that f(0) is monotone decreasing on

10,0 +€]. If f is continuous, then f is monotone decreasign on ©.

Proof. Pick any 61,0, € © and assume 6; < 0y. Let m = infyeq f(f) and K = {0 €
0

[6’1,92]‘ f(0) = m}. By the Weierstrass theorem, K is non-empty. Let

1

= sup(K), then



0 € K because K is closed which is due to the continuity of f. Suppose 0 # 0, then Je > 0
such that 6 + € < 65 and
m=f(0) > f(0+e>m.

Hence, § + ¢ € K. But § = sup(K). Contradiction. Therefore, sup(K) = 6, and f(6) =
m < f(@l) |

B An Application with Simulation

Applying our proposed auction mechanism to the network data from one of the largest
U.S. service providers, we address the following question in this section: Compared with
the standard Vickrey-Clarke-Groves (VCG) auction for mobile data offloading suggested in
the computer science literature (Dong et al. 2014), how much can our optimal procurement
auction improve the cellular network’s expected payoff? Since the VCG-type auction is
a welfare maximizing mechanism, it is not surprising that our mechanism can outperform
the standard VCG auction. However, our Monte Carlo simulation results demonstrate that
the improvement is considerable: As compared with the standard VCG auction, our pro-
curement auction significantly improves the cellular network’s expected payoff and reduces
procurement cost by more than 50%. We also evaluate the impact of the cellular capacity
and the relative cost of deploying cellular resources on the performance difference between

these two mechanisms.

B.1 Derivations with Specific Functional Forms

To compute numerical examples, we first assume the following parameterization of C(q, 6;):
C(q,0:;) = (0.5 + ‘91‘)(12; which implies c(g,0;) = (1 + 26;)q, co(q,0;) = 2q.

In this case, we can explicitly solve for ¢;(v) as

gi(v) =~ (1+26;, +2H(6;))

2



We also assumed that

Km
W () = —— o
where £, > 0 is the weight placed on region m. Hence, w!, (z) = —kp(z — \y) 72, and
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So we have
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Substituting the functional form of g;(v), we have ¢* as the solution to the following cubic

equation:
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q is defined as
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B.2 VCG Auction

Before we do the comparison, we review the multi-unit VCG auction for procurement in our

context. The VCG auction involves the following steps:

e Invite each hotspot to report its cost parameter #. Denote the submitted cost param-

eters as (61,0q,- -+ ,0n).

e Under the VCG mechanism, the socially efficient allocation minimizes the sum of the
expected congestion cost of the cellular service provider and the cost of hotspots.
Hence, the minimization problem can be formalized as follows:

min E[J (iq:) —1—5\[:0((]:,‘91')}

q1,92;--,4N

s.t. ¢ =>0,Vi=1,2--- N.

o Let 7 (6y,0s, - ,0;) be the optimal value of the objective function, and let (¢}, ¢35, -+ , )
be an optimal solution to the cost minimization problem. Let 7_; (f_;) be the optimal
value of the objective function with the additional constraint ¢; = 0 (i.e., hotspot i

does not participate in the auction).

e The cellular service provider will pay hotspot i according to the following:
Pi=m_i(0_;) —m (01,02, - ,0n)+C(q;, 0:)

where m_; (6_;) — 7 (01,05, -+ ,0x) is the bonus payment to hotspot 7, representing the
positive externality that hotspot ¢ is imposing on the cost minimization problem. The
cellular service provider pays hotspot i its cost C(q},6;), plus its contribution to the

cost minimization problem. This payment internalizes the externality.

e Hotspot ¢ provides capacity ¢ and receives payment F;.
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Figure 1: Area Map of A Typical Cell Sector

Note that the VCG auction is both truth-telling and socially efficient by standard ar-
guments. All hotspots bid their cost parameters truthfully, irrespective of other hotspots’
bids. The VCG mechanism guarantees the minimum total cost. However, it leads to an

overpayment to hotspots that is shown in the simulation.

B.3 Simulation

In our simulations, we consider a typical urban neighborhood in New York City, as shown in
Figure 1. We define a cell sector as the range of the cell tower. Our dataset consists of the
location information of 14,576 cell towers from a large cellular provider in the U.S. In our
simulation study, we pick a cell tower in New York City from the full list of cell towers and
simulate the mobile data demand in this sector. In Figure 1, the cell tower is represented by
the marker labelled with the letter “T”, and the 69 WiFi hotspots in the given cell sector
are represented by other markers.! We set the communication range for a cell tower as
250m, and set the communication range for Wi-Fi as 100m. The following steps describe

the procedure of simulations:

Locations of commercial WiFi hotspots are from http://wigle.net.



e Generate traffic demands in the given cell sector: To gain a sense of the population
density in the coverage area of the cell tower, we use 2010 census data, which contains
the land area coverage and population density of each zip code. Combining the market
share of this service provider for the first quarter 2013,2 we estimate the number of
users in the given cell sector. On average, smartphone users consume about 1GB
data per month, but the usage patterns of mobile data is highly uneven.® Paul et al.
(2011) and Jin et al. (2012) found that a small number of heavy users contribute to a
majority of data usage in the network. To consider the heterogeneity of data usage and
the effects of peak hours, we simulate individual data usage from the byte distribution

in Jin et al. (2012).4

e Generate WiFi regions in the cell sector: Dong et al. (2014) showed that the appropriate
number of WiFi regions in a cell sector is six. Following their approach, we generate
six WiFi regions by clustering the WiFi hotspots using k-means. In Figure 1, Region

A, Region B, ... , and Region F indicate which region the WiFi hotspots belong to.

e Generate traffic demands in each WiFi region: We use two different methods to place
users in the cell sector and assign them to the corresponding WiFi regions according
to their locations. (1) All users are randomly placed in the cell sector. (2) All users are
placed according to the densities of the hotspots.® After placing all the users, a nearest
hotspot is calculated for each user location. If the distance between the nearest hotspot

found and the user location is less than the hotspot range (100m), the user is counted

2See  http://www.talkandroid.com/159929-t-mobile-loses-market-share-while-verizon-and-att-continue-
to-dominate.

3See http://www.fiercewireless.com /special-report /average-android-ios-smartphone-data-use-across-tier-
1-wireless-carriers-through.

4We obtain the quantiles of the byte distribution from Jin et al. (2012) and generate inidvidual us-
age using the Johnson System. We also adjust the usage by considering the effect of peak hours, see
http://chitika.com/browsing-activity-by-hour.

5To calculate the densities of the hotspots for different locations, we divide the square circumscribing the
cell sector into a 20 by 20 array of grids. By default, each grid has a weight of 1, except the grids whose
centers are not in the range of the tower. The grid’s weight is increased by the number of hotspots whose
locations are inside the grid. Then, a list of grid indices is created according to the weight of each grid.
Finally, for each user, a grid index is first uniformly chosen from the list, and then the location of the user
is uniformly chosen from the range of the grid with the grid index just picked.
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Figure 2: Performance Comparison of the Procurement Mechanisms for the Service Provider

as one of the regional population according to the WiFi region; otherwise, the user is
considered as in the region with no hotspots (region 0). We run 1,000 simulations to

generate traffic demands in each WiFi region.

o Generate cell tower capacity: The cell tower capacity is set to three times 3.84 MHz
(Dong et al. 2014). Data spectral efficiency varies across towers from 0.5 to 2 bps/Hz.°
We set spectral efficiency to be 1 by default and then vary the spectral efficiency to
evaluate its impact. Note that when the user demand for mobile data is below 80% of

the cell tower capacity, the cellular service provider faces no congestion cost.

We conduct a variety of simulations to compute the corresponding allocation under the
VCG mechanism and under our optimal mechanism. The relative cost of deploying cellular
resources as compared with WiFi resources affects the bandwidth allocation result. Joseph
et al. (2004) assumed that the relative cost of deploying cellular resources as compared
with WiFi resources is 4:1. We follow their assumptions and set the parameter values:
Wy, (fm + Ym) = 0.5a (W) where a is set to 4 and C (Q,6;) = (0.5 + 6;) @*. In the

simulation, we vary the relative cost parameter a and find that the results are robust. A

hotspot’s private cost parameters 6; is drawn from a uniform distribution U|0, 1] for 1,000

6See http://www.rysavy.com/Articles/2011_05_Rysavy_Efficient_Use_Spectrum.pdf.
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Figure 3: Performance Difference and Cell Tower Capacity (Left); Performance Difference
and Relative Cost of Deploying Cellular Resources (Right)
times.

The simulation result of the performance comparison is shown in Figure 2. In the left
panel, the users are randomly placed in the cell sector. In the right panel, the users are
placed according to the densities of the hotspots. The two panels show similar results: our
proposed procurement auction significantly outperforms the VCG mechanism in terms of
the expected net gain of the cellular service provider (the expected net gain = the reduction
of congestion cost - the payment to hotspots).

Data spectral efficiency varies across cell towers using different wireless technologies. An
increase in spectral efficiency significantly contributes to tower capacity. The left panel of
Figure 3 evaluates the impact of spectral efficiency (cell tower capacity) on the performance
difference, which is defined as the difference between the service provider’s expected net gain
under the proposed mechanism and the gain under the VCG mechanism.” Note that the
unit of the performance difference is normalized, and we are only interested in the trend.
As the cellular capacity increases, the advantage of our proposed mechanism, in comparison
with the VCG mechanism, decreases. This is because the bandwidth purchased from the

WiFi hotspots also decreases as cellular capacity increases, as is indicated by the dashed line

"The simulation results are similar when the users are randomly placed or are placed according to the
densities of the hotspots, so here we only present the result when the users are randomly placed.



in the left panel of Figure 3. The service provider is less willing to purchase WiF'i resources
when it owns a relatively large cellular capacity, and the overpayment problem in the VCG
mechanism is thus less severe.

The right panel of Figure 4 shows that as a increases, the advantage of our mechanism as
compared with the VCG mechanism increases, which is expected because, with congestion
being more costly, the service provider is more willing to procure from the WiFi hotspots,

thereby exacerbating the overpayment problem in the VCG mechanism.

C Cellular Technology and Broadband Technology

We elaborate the differences between broadband technology and cellular technology from
the two perspectives.

(1) Broadband Technology

With the rapid deployment of fiber optics, broadband capacity constraints are gradually
becoming less of an issue, even as the consumption of online content continues to grow at
a rapid pace. More specifically, our assumption was guided by the fact that over the past
years, broadband providers have increased capacity, and thanks to rapid advances in fiber
technology (whose rate of growth is even faster than Moore’s Law in semiconductors; at the
same time, the networking equipment have been getting cheaper by around 25-40% every
year following Moore’s Law), broadband providers have been able to increase capacity at
a very low cost, even as consumers have increased their consumption for online content.
The cost of provisioning the marginal customer at large broadband providers today is less
than $1/month: about half of that cost is till the point of peering (the “backhaul” cost, in
industry terminology), and the other half is incurred while carrying the data from the point
of peering to the local exchange. Thus, broadband capacity has not been a bottleneck even
as consumption for data has increased. Choi et al. (2014) highlighted the difference between

fixed and mobile networks: Mobile networks encounter technical and physical constraints in



expanding capacity due to the limited availability of spectrum. The Federal Communications
Commission (FCC) also stated the difference: “Mobile broadband is an earlier-stage platform
than fixed broadband, ..., Mobile broadband speeds, capacity, and penetration are typically
much lower than for fixed broadband. ... In addition, existing mobile networks present
operational constraints that fixed broadband networks do not typically encounter.” (FCC
Order, page 94-95).

An independent verification that broadband capacity is not a bottleneck comes from
empirical observations. FCC comes out with an annual state of the broadband report ev-
ery year (called “Measuring Broadband America”), and the latest report that is available
currently is for the year 2014. In this report, one of the performance metrics that the Com-
mission measures is the “24 Hour versus Peak Performance Variation by Technology.” The
data shows that there is hardly any dip in performance during peak periods (for example,
for fiber, during peak periods, the performance drops from an average 115% of advertised
speeds to 112% of the advertised speed during peak hours; for cable, the drop is from 105%
of advertised speeds to 101%; and for DSL, the drop is from 95% to 91%), and these numbers
have arguably become better since (currently, the FCC has the raw data available for the
2015 report on its website). Therefore, broadband providers are gradually becoming more
able to handle their peak load without any degradation in speed of delivery.

(2) Cellular Technology

The cellular capacity is determined by amount of spectrum, number of cell towers, and
spectral efficiency of technology, as is illustrated in the following figure which is from Rysavy-
Research (2014).

Spectrum is a limited and finite resource for mobile networks (Rysavy-Research 2014).
In the U.S., cellular systems use roughly 500 MHz, although an individual operator’s access
to spectrum is much smaller and is subject to spectrum aggregation rules. On the other
hand, wired network can access far more frequencies in the mediums (e.g., coax cable, fiber-

optic cable, etc.) they use, and they can carry their spectrum within the physical medium
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with near-complete control. Once the capacity of one cable is exhausted, another one can
be placed alongside. This is in stark contrast with wireless networks which rely on the
propagation of signals through the air and the same frequencies cannot be used without
interference until some distance away.

Because of the finiteness of the spectrum resource, obtaining radio spectrum is very
costly: In the United States, the Federal Communications Commission (FCC) conducts
competitive auctions of licenses for electromagnetic spectrum. Since July 1994, the FCC
has conducted 87 spectrum auctions, which raised over $60 billion for the U.S. Treasury
(Cramton et al. 2002). Therefore, additional radio spectrum is not always available and
obtaining it from spectrum auctions is expensive. Additionally, due to antitrust concerns in
the wireless industry, several influential economists suggested that FCC should place limits
on how much spectrum AT&T and Verizon are allowed to buy (Cramton et al. 2007). Such
concern is reflected in the action taken by the FCC to block the merger between AT&T and
T-Mobile in 2011. Due to these regulatory constraints, it is very difficult for cellular service
providers to acquire additional spectrum resources.

Given limited spectrum, the cellular industry has been using sophisticated modulation
and encoding methods to extract as much capacity as possible from available spectrum to
meet the growing demand from mobile users. However, today’s networks already operate
at close to maximum theoretical spectral efficiency constrained by the laws of physics. It is
also far more challenging to increase efficiency in radio technology than to increase efficiency
in wire or fiber cables because radio connections in open environment have more noise than
shielded wires.

Although building more cell towers can also increase wireless capacity, building a new cell
tower is very expensive and time consuming. In the United States, the number of cell towers
increased from 12,824 in 1993 to 304,360 in 2013. However, the increased number of cell
towers has not allowed capacity to come even close to matching the capacity of wired network.

Some industry expert estimates that it will cost at least $150,000 to construct a tower.
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Moreover, there are health concerns on the radiation from cell towers. Many governmental
bodies require that cellular service providers share cell towers so as to decrease environmental
and cosmetic impact. This issue is an influential factor of rejection of installation of new
cell towers in communities. For example, in February 2009, the French telecom company
Bouygues Telecom was ordered to take down a cell tower due to uncertainty about its effect
on health. Residents in the commune Charbonnieres in the Rhone department had sued the
company claiming adverse health effects from the radiation emitted by the 19-meter-tall cell
tower.

Because of the unique characteristics of the information and communications technology
(ICT) industries, broadband capacity has not been a constraining factor in the past several
years. In contrast, cellular capacity is limited by the finite amount of radio spectrum and the
inherent limitations of radio as a medium. Even with a breakthrough in cellular technologies
in the near future, cellular capacity will still be limited by various regulatory constraints,
which is less of an issue for broadband because it does not rely on radio spectrum and cell

towers.
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