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Abstract

The unprecedented growth of cellular traffic driven by the use of smartphone for

web surfing, video streaming, and cloud-based services poses bandwidth challenges

for cellular service providers. To manage the increasing data traffic, cellular service

providers are experimenting the use of third-party WiFi hotspots to augment its cel-

lular capacity. We develop an analytical framework to study the optimal procurement

auction for WiFi capacity. Such an auction design is complicated by the fact that

WiFi networks have much more limited spatial coverages compared with the cellular

network. Neither a global auction that includes all WiFi hotspots nor multiple local

auctions that include only hotspots in each local WiFi region is optimal. We find that

the optimal mechanism is an integration of one global auction which includes hotspots

from an endogeneously determined set of WiFi regions and many separate local auc-

tions which are only held in the rest of the WiFi regions. To implement the optimal

mechanism, we also provide an efficient algorithm whose computation complexity is of

the order of the number of WiFi regions. Our work contributes to the literature by

designing the optimal mechanism for a unique type of IT procurement auction problem

which is a tight integration of economics and computational technology.
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1 Introduction

The increasing popularity of smartphones has triggered an explosive growth of mobile data

traffic driven by web surfing, video streaming, online gaming, and many other digital goods

industries (Tan et al. 2016; Tan and Carrillo 2017). According to Cisco VNI Global Mobile

Data Forecast Update (2016-2021), global mobile data traffic grew 63 percent in 2016 and

reached 7.2 exabytes per month at the end of 2016, up from 4.4 exabytes per month at

the end of 2015 1. Moreover, mobile data traffic is expected to grow at a compound annual

growth rate of 47 percent from 2016 to 2021, reaching 49.0 exabytes per month by 2021. The

huge amount of mobile data traffic poses a challenge to the network infrastructure: Cellular

networks are overloaded and congested during peak hours because of insufficient capacity,

which leads to poor user experience and churn.

Researchers have proposed several solutions from both technical and economic aspects:

(1) increasing the number of cellular towers or deploying the cell-splitting technology; (2)

upgrading the network to fourth-generation (4G) networks such as Long Term Evaluation

(LTE), High Speed Packet Access (HSPA) and WiMax; (3) expanding capacity by acquiring

the spectrum of other networks, such as the attempted purchase of T-Mobile USA by AT&T;

(4) adopting smart data pricing mechanisms (e.g. usage- and app-based pricing plans)

to constrain the heaviest mobile data users, instead of using flat-rate pricing plans with

unlimited data (Sen et al. 2012); and (5) offloading data traffic to WiFi networks (Bulut and

Szymanski 2012).

Although all these solutions help alleviate the problem, each has its disadvantages. The

first two solutions require large investments, and getting government approval for building

new cell towers can take years. From the economic perspective, it is extremely expensive

to increase the number of cellular base stations.2 As a result, all cellular networks augment

1http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/mobile-white-paper-c11-520862.pdf.

2According to Balachandran et al. (2008), although cell-splitting provides capacity benefits, it could be
quite expensive and economically infeasible since in addition to the base station hardware/deployment cost,
each of the new bases needs to be provided with backhaul connectivity either via wireline access or microwave
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the first two solutions with other approaches to expand capacity. The third solution suffers

from regulatory constraints. Cramton et al. (2007) showed that an important market failure

arises in spectrum auctions with dominant incumbents. They suggest that the Federal

Communications Commission (FCC) should place limits on how much spectrum AT&T and

Verizon are allowed to buy.3 Although the average net benefits realized under congestion-

based pricing tend to be higher than the average net benefits realized under flat-rate pricing

(Gupta et al. 2011), usage based plans may also backfire by alienating the smartphone users

who are likely the customer segment with the highest revenue growth potential.

Because of these technical, economic and regulatory constraints, the fifth solution—using

WiFi hotspots for mobile data traffic offloading—seems to be one of the most promising

approaches in augmenting solutions (1) and (2). A straightforward approach is for the

cellular service providers to build and manage their own hotspots. In fact, we have seen

some pilot projects for self-managed hotspots (Aijaz et al. 2013). Even though the option of

service providers directly managing hotspots is often available, it is still expensive (Iosifidis

et al. 2015) and may not be cost-effective. For example, Paul et al. (2011) found that 28%

of subscribers generate traffic only in a single hour during peak hours in a day. Clearly,

building and managing hotspots just for that peak hour is not efficient. Offloading traffic

to third party hotspots overcomes the obstacle of managing a hotspot and ensures the high

availability of WiFi resources. This strategy could potentially be a win-win solution: The

cellular service provider saves the cost of building more cellular base stations or hotspots

just for the peak traffic demands. The WiFi hotspots profit from sharing their otherwise

wasted spare capacity. Indeed, such practice of sharing unused capacity is gaining traction

in the industry (e.g., Airbnb, Uber) thanks to the advancement in technology, and the study

of such sharing economy is also on the rise (Weber 2014).

We follow this paradigm of sharing economy and focus on offloading mobile traffic to

links.
3This concern is also reflected in the action taken by the FCC to block the recent merger between AT&T

and T-Mobile USA.

2



third-party WiFi hotspots owned by entities such as local restaurants, bookstores, and ho-

tels. Cellular service providers have shown great interest in such an approach. In 2012, for

example, KDDI Corporation, a principal telecommunication provider in Japan, had already

cooperated with about 100,000 commercial WiFi hotspots (Aijaz et al. 2013). However, of-

floading data traffic to third-party WiFi hotspots is not purely a technology augmenting the

existing cellular network. Considering the economic incentives of third-party WiFi hotspots,

WiFi offloading is also a practical mechanism design problem. Therefore, effectively leverag-

ing third-party WiFi capacity requires the combination of both information technology and

economic theory, which is in the spirit of designing smart markets (Bichler et al. 2010). Be-

cause WiFi capacity is a type of product with quite standardized characteristics, competitive

bidding should be a better way to select the lowest cost bidder than negotiations.4

In the present study, we aim to model and solve the optimal procurement auction of third-

party WiFi capacity. Because WiFi networks usually have a more limited range than cellular

resources, the range of a cellular tower should be partitioned into several WiFi regions. The

cellular capacity can serve data traffic in any WiFi region, whereas WiFi networks can serve

only local traffic. However, the procurement auction design is not equivalent to running one

local auction in each WiFi region because of the presence of the cellular resource. Buying

more resources from one local WiFi hotspot frees up more cellular capacity to serve demand

in other WiFi regions, thereby creating an inter-region competition. On the other hand, the

procurement auction design is not equivalent to one global auction either where hotspots in

all WiFi regions participate in one auction. This is because implementing a global auction

may not always be feasible: WiFi capacity in one region cannot be transferred to other

regions. The inflexibility of WiFi capacity causes difficulty for implementing a completely

global auction when regions with heavy mobile traffic have insufficient WiFi capacity and

those with light mobile traffic have excessive WiFi capacity.

4See for example, Bajari et al. (2009), who considered several determinants that may influence the choice
of auctions versus negotiations. For complex projects, auctions may stifle communication between the buyer
and the contractor. Clearly, WiFi capacity satisfies the standard assumption of well-defined products in the
auction literature.
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We find that the optimal mechanism is equivalent to an integration of one global auction

which includes hotspots from an endogeneously determined set of WiFi regions and one local

auction on each of the rest of the WiFi regions. This integration of global and local auctions is

both theoretically interesting and practically important. It is the consequence of two unique

features of procuring WiFi capacity for mobile traffic offloading: 1) the coupling of local

auction because of the existence of the more flexible cellular capacity; 2) the heterogeneity

in terms of both the demand for mobile bandwidth and the supply of WiFi capacity in

different WiFi regions. To implement the optimal mechanism, we also provide an efficient

algorithm whose computation complexity is of the order of the number of WiFi regions.

The insights from the present paper apply more generally to a class of procurement

auction problems. The key issue in the procurement of WiFi capacity is to design the optimal

auction mechanism in the presence of product flexibility and information asymmetry between

suppliers (i.e., WiFi hotspots) and the downstream firm (i.e., the cellular service provider).

This procurement problem in the wireless industry is an example of a general setting where

(1) the downstream firm owns product-flexible in-house capacity that can be used for multiple

products; (2) the product-flexible capacity is limited, and the firm needs to procure products

from multiple upstream suppliers; and (3) each supplier is specialized and can produce only

one product. Given the limitation of product-flexible capacity (in-house capacity) and the

information asymmetry between the downstream firm and the suppliers, the downstream

firm needs to solve the complex problem of designing an optimal procurement auction. This

procurement scenario is common when companies are investing in product-flexible capacity

that entails the ability to produce multiple products with the same capacity, and the ability

to reallocate capacity between products (Goyal and Netessine 2011). Many manufacturing

and service companies use flexible capacity to hedge against uncertainty in future demand

(Fine and Freund 1990; Van Mieghem 1998).5

It should be noted that we have abstracted away the capacity problem of the broadband.

5In the automotive industry, the plants for most of the automobile companies are much more flexible
than before: Ford’s Rouge Plant can manufacture nine different products (Goyal and Netessine 2011).
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Our key argument is that broadband technology is fundamentally different from cellular tech-

nology in terms of capacity constraints. First, broadband technology has advanced faster

than cellular technology in past decades, and currently increasing broadband capacity is

much cheaper than increasing cellular capacity. Unlike fiber optics in the case of broadband

capacity, cellular capacity is inherently and technically constrained by radio spectrum ca-

pacity. Second, even if significant advances in the cellular technologies may take place in

a near future, the cellular service providers still need to worry much about the traffic be-

cause of various regulatory constraints. We elaborate these differences between broadband

technology and cellular technology in Online Appendix C.

2 Literature Review

The technology aspect and implementation of this study are clearly related to the vast liter-

ature in computer science on mobile data offloading (Balasubramanian et al. 2010; Iosifidis

et al. 2015; Dong et al. 2014). We refer interested readers to Aijaz et al. (2013) for an

overview of the technical and business perspectives of mobile data offloading and to Kang

et al. (2014) for a discussion on mobile data offloading through third-party WiFi hotspots.

The theoretical aspect of the present study is mostly related to two streams of literature,

optimal auction design and supply chain management, which we will review in more detail.

In many procurement situations, the buyer cares about other attributes in addition to

price when evaluating the submitted bids. Dasgupta and Spulber (1990) extended the stan-

dard fixed quantity auction and studied a quantity auction that allows the quantity of goods

purchased to be endogenously determined by the submitted bids. In a multi-attribute scor-

ing auction, suppliers submit multidimensional bids, and the contract is awarded to the

supplier who submitted the bid with the highest score according to a scoring rule. Che

(1993) developed a scoring procurement auction in which suppliers bid on two dimensions of

the good. This scoring auction allows only sole sourcing. However, offloading data traffic to
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multiple WiFi hotspots is naturally done in our procurement setting. Duenyas et al. (2013)

showed that a simple version of the open-descending auction can implement the optimal

procurement mechanism for a newsvendor problem. The model in the present study differs

from such auctions because of the unique challenge in our application setting.

Much of the literature on supply chain management has focused on scenarios where

adding product-flexible capacity is beneficial (Goyal and Netessine 2011). Janakiraman

et al. (2014) considered a firm that produces multiple products each period, using a shared

resource with limited capacity, in a periodically reviewed stochastic inventory model. A

natural question is, with limitations on product-flexible capacity, how should a downstream

firm design its procurement auction mechanism. In the present study, we introduce an

auction design problem with asymmetric information in the presence of product-flexible

capacity. The downstream firm procures capacity from the suppliers to optimally combine

with its in-house capacity to produce different products. In this process, the downstream

firm makes the following decisions: How to allocate its product-flexible capacity to produce

different products? How much quantity should be procured from each supplier? What

is the corresponding payment scheme for each supplier? Our theoretical analysis provides

insights to these questions in the context of the telecommunication industry and complement

the existing literature on product line designs when the product-flexible capacity is limited.

Netessine et al. (2002) analytically characterized the critical effects of increasing demand

correlation between products on the flexible capacity decisions. We also find that the demand

correlation as well as the level of in-house product-flexible capacity plays a crucial role in

the optimal design of the procurement mechanism. When the demand is highly positively

correlated or when the in-house product-flexible capacity is sufficiently large, the optimal

procurement mechanism simplifies to a global auction including all upstream suppliers; but

in general, it is equivalent to an integration of one global auction and multiple local auctions.
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3 Model

3.1 Model Setup

A cellular network provides service to its customers who demand bandwidth. We think of

the packets requested by the consumers as being serviced in a queuing system. The expected

waiting time a typical customer experiences can be written as W (µ) where µ is the service

capacity. Clearly, W (µ) should be decreasing in µ and be bounded below. We further make

the technical assumption that W (µ) is twice differentiable and is strictly convex in µ:

dW

dµ
< 0,

d2W

dµ2
> 0.

This is a mild technical assumption that is satisfied, for example, by an M/M/c queue.6 In

the special case of an M/M/1 queue, as is assumed in Cheng et al. (2011), W (µ) is simply

W (µ) = 1
µ−λ

where λ is the customer demand rate.

Given the expected waiting time, the cellular service provider incurs a cost of χ(W ),

which is a strictly increasing function of W . To capture the rapidly rising cost of service

degradation due to customers’ increased expected waiting times (e.g., dissatisfied customers,

or churn), we assume that the function χ(·) is convex. As a special case, Cachon and Feldman

(2011) assumed the waiting cost is a linear function of W . For convenience, we refer to the

composition of χ(·) and W (·) as ω(µ) ≡ χ(W (µ)). It is straightforward to show that ω(µ)

is strictly decreasing and strictly convex in µ.7

Given the unprecedented growth rate of mobile data demand and the high cost associated

with congestion, the cellular network is interested in procuring spare resources from third-

party WiFi hotspots. Although both can be used to meet the user demand, cellular resources

and WiFi resources have different spatial coverages. In suburban areas, a typical cellular

base station covers 1-2 miles (2-3 km) and in dense urban areas, it may cover one-fourth

6For the proof, please refer to Lemma 1 in Online Appendix A.
7ω′(µ) = χ′(W ) ·W ′(µ) < 0, ω′′(µ) = χ′′(W )

(
W ′(µ)

)2
+ χ′(W )W ′′(µ) > 0.
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to one-half mile (400-800 m). A typical WiFi network has a range of 120 feet (32 m)

indoors and 300 feet (95 m) outdoors.8 To model this unique feature of bandwidth supply,

we partition a cell sector into several WiFi regions so that WiFi hotspots within the same

region are relatively close together. In particular, we assume the cell sector can be divided

into M WiFi regions.9 Cellular resources can serve traffic in any region m, whereas WiFi

hotspots in region m can only serve local traffic. A unique challenge in the procurement

auction is that the longer range cellular resource introduces coupling between the shorter

range WiFi hotspots. The procurement problem in one WiFi region is not independent of

the procurement problem in another region, because purchasing more WiFi capacity from a

local WiFi hotspot in one region frees up more cellular capacity that can be used to serve

the demand in another region.

Serving mobile demand for the cellular network provider incurs cost to a hotspot which

differs among hotspots. We assume the cost function for hotspot i to provide capacity Q to

the cellular network is

C(Q, θi) ≡
∫ Q

0

c(q, θi)dq, i = 1, 2, · · · , N.

where c(q, θi) ≥ 0 is the marginal cost function for hotspot i, and θi reflects each hotspot’s

private information about the cost of bandwidth provision which differs among different

hotspots. In reality, the private information θi can be interpreted as each hotspot’s sensitivity

to its WiFi congestion rate. For example, some hotspots, like coffee shops, might be more

sensitive to their WiFi congestion because some customers go there primarily for their WiFi

services, while other hotspots, like restaurants, might be less sensitive. We assume cq(q, θi) ≥

0 to capture the fact that the marginal cost of providing capacity for each hotspot increases

8See http://en.wikipedia.org/wiki/Wifi, and http://en.wikipedia.org/wiki/Cell site.
9For example, one can generate regions by clustering the WiFi hotspots using k-means method. Note

that for simplicity, we assume that cellular capacity can be reallocated seamlessly from one WiFi region to
another. In practice, some cellular capacity can be redirected (e.g., core processing for the base station),
and some capacity cannot be redirected (e.g., radio capacity for directional antennas – these cover only a
certain direction and angular range).
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as more capacity is provided to the cellular network. Following previous literature (Dasgupta

and Spulber 1990), we also assume that the marginal cost is increasing and convex in the cost

parameter, cθ ≥ 0, cθθ ≥ 0, and that cqθ ≥ 0. Hotspots’ cost parameters are independently

and identically distributed with a continuously differentiable cumulative distribution function

F (·) defined on [θ, θ̄] which is common knowledge. We further assume H(θ) ≡ F (θ)/F ′(θ) is

an increasing function of θ which is satisfied by common distribution functions such as the

uniform distribution.

To model potential revenue sharing between a hotspot and its Internet Service Provider

(ISP), we assume that a hotspot gets a proportion (α̃ ∈ (0, 1)) of the payment from the

cellular service provider for providing WiFi capacity. The other proportion (1− α̃) goes to

the ISP. We define α = α̃−1 for notational convenience. Finally, let θ∗ be the threshold cost

parameter chosen by the cellular service provider so that any hotspot with θ > θ∗ will not

participate in the procurement auction.

To determine the optimal auction mechanism, we first need to determine the value of

procuring WiFi capacity. Let ym be the amount of WiFi capacity the cellular service provider

purchased from hotspots in region m, and let y =
∑M

m=1 ym be the total WiFi capacity pur-

chased in all regions. Because congestion costs in different regions naturally involve different

customers at any given time, a cost function that is separable across regions captures such

cost structure. This is also consistent with the tradition in economics of using additive utili-

tarian social welfare function which is also widely used in the information systems literature.

In particular, we model the congestion cost of each region, ωm, as a region-specific function

of ym+µm, for m = 1, · · · ,M . For example, different regions might have a different customer

demand rate and the cellular service provider might also place different weights in different

regions. The total congestion cost is then
∑M

m=1 ωm

(
µm + ym

)
where µm is the amount of

cellular capacity allocated to region m, and the congestion cost minimization problem can
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be written as

J(y1 · · · , yM) = Minµ1,··· ,µM

M∑
m=1

ωm

(
µm + ym

)
(1)

s.t.
M∑

m=1

µm ≤ µ, µm ≥ 0, for m = 1, 2, ...M.

The cellular service provider purchases WiFi capacity (y1, · · · , yM) for the M regions

from hotspots in these regions to supplement its cellular capacity.10 The objective is to

minimize the total cost, including that for congestion J(y1, · · · , yM) and for procurement,

which includes both the actual costs of hotspots providing WiFi resource and the information

rent due to information asymmetry. The cellular service provider follows a two-step decision

procedure: In the first stage, it purchases WiFi capacity from hotspots in different regions.

In the second stage, the cellular service provider allocates cellular resources across regions.

3.2 Global Auction

In this section, we assume the non-negativity constraints on µm are not binding and call

the resulting auction mechanism global auction. We will see later that this is an important

building block of the actual optimal mechanism.

Proposition 1 Under global auction, the optimal cellular resource allocation is given by

µ∗
m = ϕm

(
Ψ(y + µ)

)
− ym

10It is worth noting that our problem can be regarded as a sub-problem of a capacity expansion project
for a cellular service provider. Given a cellular sector, the cellular service provider can compare the option of
procuring WiFi capacity or building a new cell tower, or not to seek any capacity expansion. By evaluating
and comparing the overall benefits (i.e., the difference between the reduced congestion cost and the cost
of capacity expansion, whether through WiFi procurement or building cell tower), the service provider can
select the best action. We discuss this more formally in Section 4. Intuitively, WiFi procurement will be
preferred in situations where (i) the existing tower capacity is not terribly insufficient given the customer
demand; or (ii) there are plenty of inexpensive WiFi hotspots in the regions. On the other hand, in regions
where the demand or the growth of demand is enormous and the existing cellular capacity is way insufficient,
building a new cell tower might be more cost-effective than procuring WiFi capacity from hotspots.
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where ϕm(·) is the inverse of ω′
m(·) and Ψ(·) is the inverse of Φ(·) ≡

∑M
m=1 ϕm

(
·
)
. The

optimal congestion cost is

J(y) ≡
M∑

m=1

ωm

(
ϕm

(
Ψ(y + µ)

))
.

Moreover, J(y) is decreasing and convex.

Proof. The first-order condition implies that there exists a Lagrange multiplier for the

cellular capacity constraint ν > 0 such that

ω′
m(ym + µm) + ν = 0, ∀m = 1, 2, · · · ,M.

Hence,

µ∗
m = ϕm

(
− ν
)
− ym,

where ϕm is guaranteed to exist due to the strict convexity of ωm(·). The cellular capacity

constraint is binding at the optimal solution, which implies

µ =
M∑

m=1

µ∗
m =

M∑
m=1

(
ϕm

(
− ν
)
− ym

)
=

M∑
m=1

ϕm

(
− ν
)
− y = Φ(−ν)− y.

Because ωm(·) is strictly convex and ϕm(ω
′
m(x)) = x, we see that ϕm is monotone increas-

ing:

ϕ′
m(ω

′
m(x)) =

1

ω′′
m(x)

> 0.

Hence, Φ(x) is also monotone increasing:

Φ′(x) =
M∑

m=1

ϕ′
m

(
x
)
> 0,

which guarantees the existence of the inverse of Φ(·), which is denoted by Ψ(·).

Therefore, ν = −Ψ(y + µ) and the claim follows. Because J(y1, · · · , yM) is a function of
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y1, · · · , yM only through their sum, y, with slight abuse of notation, we write it simply as

J(y) when none of the non-negativity constraint is binding.

Now, we show that J(y) is decreasing and convex in y. Denote z = y + µ so that

Φ(−ν) = z and Ψ(z) = −ν. Because Ψ(Φ(x)) = x, we have

Ψ′(z) =
1

Φ′(−ν)
=
( M∑

m=1

ϕ′
m

(
− ν
))−1

.

The first and second derivative of J(y) are

J ′(y) =
M∑

m=1

ω′
m

(
ϕm

(
Ψ(z)

))
ϕ′
m

(
Ψ(z)

)
Ψ′(z)

= Ψ(z)
1∑M

m=1 ϕ
′
m

(
− ν
) M∑

m=1

ϕ′
m

(
− ν
)

= Ψ(z) = −ν < 0,

J ′′(y) = Ψ′(z) =
( M∑

m=1

ϕ′
m

(
− ν
))−1

> 0.

Therefore, J(y) is decreasing and convex in y.

For this optimal allocation to be feasible, we need µ∗
m ≥ 0, or equivalently,

µ ≥ Φ
(
ω′
m(ym)

)
− y, ∀m = 1, · · · ,M. (2)

As we stated at the beginning of this section, we assume the non-negativity constraints of

µm are non-binding, hence the inequality (2) is always satisfied.

Intuitively, when condition (2) is satisfied, WiFi resource in one region is a perfect substi-

tute of WiFi resource in another region, from the perspective of the cellular service provider.

Given our solution for the second-stage problem, the first-stage problem is a direct revelation

game in which hotspots truthfully report their types in the Bayesian Nash equilibrium. We

adopt the notational convention of writing θ−i = (θ1, ..., θi−1, θi+1, ..., θN). The procurement

auction can be implemented via a direct revelation mechanism where
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• The cellular service provider announces a payment-bandwidth schedule Pi = P (θi, θ−i),

and a bandwidth allocation schedule qi = Q (θi, θ−i);

• Hotspot i truthfully reports the private cost parameter θi, given P (θi, θ−i) andQ (θi, θ−i);

• Hotspot i provides bandwidth qi = Q (θi, θ−i) to the cellular service provider and its

revenue is α̃P (θi, θ−i).

By selling its spare bandwidth, a hotspot is essentially delivering a certain quantity of

requested data for the cellular service provider. Hence, we simply refer to Q (θi, θ−i) as

the quantity schedule from now on. To implement the scheme, the cellular service provider

can periodically run the procurement auction to obtain WiFi capacity from each region

and determines the optimal allocation of cellular capacity across regions. Alternatively, the

service provider can re-run the auction whenever the demand rates or the rate distribution

across WiFi regions change significantly. As long as the realized demand rates are consistent

with the demand rates used to compute the optimal auction rule, the operation is optimal.

From individual customers perspective, he or she may not even know how his/her requested

data is delivered (cellular tower or WiFi hotspot). It is not technologically difficult to

automatically select the “best” (from cellular service provider’s financial perspective) source

of capacity for the customer data request, which may not necessarily be the geographically

closest hotspot. Current technology already can seamlessly switch between cellular towers

and WiFi hotspots although the criteria of switching is often purely technological.

In the case of global auction, the expected gain from procuring a total of y Wi-Fi capacity

is J(0)− J(y), which is increasing and concave in y.

To describe the optimal global auction mechanism, we first define νi as

νi ≡ αc(0, θi) + αcθ(0, θi)H(θi),∀i = 1, · · · , N

13



and impose the following technical condition

−Ψ(µ) > min{ν1, ν2, · · · , νN}.

Note that the function −Ψ(q) can be interpreted as the marginal value of WiFi capacity

when the total acquired WiFi capacity is q. Hence, this condition ensures that the marginal

benefit of procuring an infinitesimal amount of WiFi capacity is larger than the hotspot with

the least (virtual) marginal cost of providing WiFi capacity. Without this condition, WiFi

procurement auction is never optimal and should not be considered by the cellular service

provider at all.

The following proposition characterizes the optimal global auction mechanism for the

cellular service provider and is an application of Dasgupta and Spulber (1990).

Proposition 2 (Dasgupta and Spulber) In the optimal direct revelation mechanism, all

hotspots truthfully announce their cost parameters θ. The optimal procurement quantity

schedule q∗i = Q∗ (θi, θ−i), for i = 1, 2, ...N is determined by

−Ψ

(
µ+

N∑
j=1

q∗j

)
= αc(q∗i , θi) + αcθ(q

∗
i , θi)H(θi).

The optimal payment schedule Pi = P ∗(θi, θ−i), for i = 1, 2, ...N is given by:

Pi = α

(
C(q∗i , θi) +

∫ θ∗

θi

Cθ(Q
∗(θ, θ−i), θ)dθ

)
.

The cellular service provider’s expected gain from the procurement auction is

J(0)− E
[
J

(
N∑
i=1

q∗i

)
+ α

N∑
i=1

C(q∗i , θi) + α

N∑
i=1

Cθ(q
∗
i , θi)H(θi)

]
.

The intuition of the above proposition is that the “virtual” marginal costs must be

equalized across all hotspots in all regions at the optimal, which determines the optimal
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quantity functions Qi(⃗θ), i = 1, · · · , N . Because cθ ≥ 0, cθθ > 0, and H(θ) is increasing in

θ, it is easy to verify that (1) q∗i is decreasing in θi; that (2) q
∗
j is increasing in θi for j ̸= i;

and that (3)
∑N

j=1 q
∗
j is decreasing in θi.

In the direct revelation game, hotspot i reports its true cost parameter θi. The ca-

pacity it needs to provide is qi = Q∗ (θi, θ−i), and its payment is Pi = P ∗(θi, θ−i). This

optimal mechanism is a global auction including all hotspots from different regions. Note

that launching separate local auctions within each region is not optimal because running

multiple local auctions essentially reduces competition among hotspots which could be ex-

ploited by flexibly allocating cellular resources among regions. In equilibrium, the virtual

marginal costs c(qi, θi) + cθ(qi, θi)H(θi) are equalized across hotspots in different regions,

and the marginal benefit of procuring WiFi capacity is also equalized across regions. The

global auction effectively creates perfect inter-region competition among hotspots which is

particularly important when intra-region competition is limited in some regions (e.g., regions

with few hotspots).

Based on Proposition 1 and Proposition 2, we design the following procedure to calculate

the optimal global auction.

• Invite each of the n hotspots to report its cost parameter θ. Denote the submitted cost

parameters as {θ1, θ2, · · · , θN}.

• Define the map q : ΘN → RN through the following steps:

– Given ν ≥ 0 and for each i = 1, 2, · · · , N , define gi(ν) as

gi(ν) =


0 if ν ≤ νi = αc(0, θi) + αcθ(0, θi)H(θi);

∞ if ν ≥ ν̄i ≡ limx→∞ αc(x, θi) + αcθ(x, θi)H(θi);

x∗ if νi < ν < ν̄i.
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where x∗ is the solution to the equation

αc(x, θi) + αcθ(x, θi)H(θi) = ν,

in the interval (0,∞). Because the left-hand-side of the equation is increasing in

x and ν ∈ (νi, ν̄i), x
∗ uniquely exists. Given a value of ν ∈ (νi, ν̄i), we can easily

solve for x∗ using bisection in an appropriately constructed interval [0, q̄i]. It’s

also easy to see that the non-negative function gi(ν) is (weakly) increasing in ν.

– Let q∗ be the unique solution to the following equation:

N∑
i=1

gi (−Ψ(µ+ q)) = q.

The uniqueness follows directly from the monotonicity of
∑N

i=1 gi (−Ψ(µ+ q))−q.

To see the existence of q∗, note that by our technical assumption, we have∑N
i=1 gi (−Ψ(µ)) > 0. Let q̄ ≡

∑N
i=1 gi (−Ψ(µ)) > 0. Because

∑N
i=1 gi (−Ψ(µ+ q))

is (weakly) decreasing in q, we have

N∑
i=1

gi (−Ψ(µ+ q̄)) ≤
N∑
i=1

gi (−Ψ(µ)) = q̄.

By continuity, q∗ exists and we can easily solve for q∗ using bisection in the interval

(0, q̄).

– Let q⃗ ≡ (q1, q2, · · · , qN) ≡ (g1(−Ψ(µ+ q∗)), g2(−Ψ(µ+ q∗)), · · · , gN(−Ψ(µ+ q∗))).

Clearly,
∑

i qi = q∗. By the definition of gi(ν), for any i such that qi ≡ gi(−Ψ(µ+

q∗)) > 0, we have

αc(qi, θi) + αcθ(qi, θi)H(θi) = −Ψ(µ+ q∗).

In other words, the optimality condition of Proposition 2 is satisfied.
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• Define payment plan Pi as

Pi ≡ Pi(θ1, · · · , θN) ≡ αC(qi, θi) + α

∫ θ∗

θi

Cθ(qi(θ, θ−i), θ)dθ.

• Hotspot i will provide capacity qi and receive payment Pi.

• The expected gain of the cellular service provider is

J(0)− E

[
J(q∗) + α

N∑
i=1

C(qi, θi) + α

N∑
i=1

Cθ(qi, θi)H(θi)

]

3.3 Integrating Global and Local Auctions, M = 2

So far, we have assumed that µ∗
m ≥ 0 for all m. We call this the feasibility condition and it

can be written as

µ ≥ Φ
(
ω′
m

( ∑
i∈Em

Q∗ (θi, θ−i)
))

−
N∑
i=1

Q∗ (θi, θ−i) , ∀m = 1, · · · ,M.

where Em is the set of participating hotspots in regionm. Under the feasibility condition, the

cellular capacity µ is sufficiently large for all regions under all realizations of hotspot supply

(i.e., θ1, · · · , θN). Clearly, this is a very restrictive assumption when the cellular capacity is

only moderate. In a realistic environment, the feasibility condition will most likely hold for

some realizations of cost parameters (θi, θ−i) but not for others.

In this section, we relax the assumption that µm ≥ 0 is non-binding when M = 2. Once

we fully solve the optimal procurement auction design problem with M = 2, we will solve

the most general case with M > 2 in Section 3.4.

To further illustrate the feasibility condition, we depict two illustrating examples in Figure

1 based on a simulation.11 We assume that there are two WiFi regions (M = 2), and that

each region has four hotspots (N = 8). The congestion cost functions for the cellular service

11For more details on the simulation, please refer to Online Appendix B.
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provider, and WiFi hotspots are ωm (µm + ym) = 1
µm+ym−λm

and C (q, θi) =
(
1
2
+ θi

)
q2,

where the private cost parameters for hotspots, (θ1, · · · , θ8), is independently drawn from

a uniform distribution U [0, 1]. In Figure 1, the X-axis corresponds to the demand rate in

region 1, and the Y-axis corresponds to the demand rate in region 2.

• A blue × indicates that the feasibility condition is always satisfied;

• A black star indicates that the feasibility condition is always violated;

• A red dot indicates that the feasibility condition is violated for some realizations of

cost parameters (θi, θ−i) but not for others.

Figure 1: Illustration of the feasibility condition. The cellular capacity, µ, is set to be 0.4
in the left panel and 0.2 in the right panel. The feasibility condition is more likely to be
violated when the demands are unbalanced or when µ is small.

When the feasibility condition is always satisfied (the blue ×), even though a hotspot

in region 1 cannot directly serve customers in region 2, by serving customers in region 1,

it effectively frees up some cellular capacity which can then be used to serve customers

in region 2. Thus, a single global auction to obtain bandwidth from all hotspots should

outperform multiple local auctions due to increased competition among hotspots. As a

result, the optimal procurement mechanism should be the global auction we discussed so

far. When the feasibility condition is always violated (the black stars), all cellular resources
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should be allocated to the region experiencing a surge in demand due to the insufficient

amount of cellular capacity. In this case, running two local auctions is optimal.

We focus on the non-trivial scenario (i.e., the red dots) where the feasibility condition

is violated for some realizations of cost parameters but not for others. In this more general

scenario, the value of procuring (y1, · · · , yM) WiFi capacity from the M regions depends

not only on the total procured WiFi capacity y, but also on its distribution across regions.

Correspondingly, we denote the value of procuring (y1, · · · , yM) WiFi capacity as J(0) −

J(y1, · · · , yM) where J(y1, · · · , yM) is the minimized congestion cost defined in (1). Given

(y1, · · · , yM), let µ̂m be the optimal amount of cellular capacity allocated to regionm ignoring

all the non-negativity constraint on µi (i.e., in the global auction). From Proposition 1, we

know µ̂m = ϕm

(
Ψ(y + µ)

)
− ym.

Intuitively, the optimal auction should be designed so that µm coincides with µ̂m when-

ever µ̂m is non-negative under some realization of (θ1, · · · , θN). On the other hand, whenever

µ̂m is negative under other realizations of (θ1, · · · , θN), the optimal quantity schedule should

be able to adjust the procurement to take into account the corner solution in the second-

stage optimization problem of (1). In other words, the optimal quantity schedule is likely a

non-smooth function of (θ1, · · · , θN) with many segments. However, as long as the quantity

schedule is non-increasing in hotspot type, we can find a truth-telling mechanism to imple-

ment it. Fortunately, as we will show in the proof of our next result, the proposed optimal

quantity schedule is continuous everywhere, which essentially upgrades local monotonicity

into global monotonicity.

The following proposition gives the optimal quantity schedule and payment function.

Proposition 3 The optimal quantity q∗∗i = Q∗∗
i (θi, θ−i) is determined by

−Ψ

(
µ+

N∑
j=1

q∗∗j

)
= αc(q∗∗i , θi) + αcθ(q

∗∗
i , θi)H(θi), ∀i = 1, · · · , N (3)
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if the resulting µ̂1 and µ̂2 are both non-negative, and is determined by

−ω′
m

(
µ1µ̂m>0 +

∑
j∈Em

q∗∗j

)
= αc (q∗∗i , θi) + αcθ(q

∗∗
i , θi)H(θi), ∀i ∈ Em,m = 1, 2 (4)

otherwise, where 1µ̂m>0 is the indicator function for µ̂m > 0.

The optimal payment schedule P ∗∗
i (θi, θ−i), for i = 1, 2, ...n, is given by:

P ∗∗
i (θi, θ−i) = α

(
C (q∗∗i , θi) +

∫ θ∗

θi

Cθ (Q
∗∗
i (θ, θ−i), θ) dθ

)
. (5)

Proof. The revelation principle implies that we only need to focus on direct mechanisms.

Hence, we only need to find the quantity schedule Q(θi, θ−i) that maximizes the service

provider’s gain from the procurement auction, taking into account the information rent

required for truth telling.

Our proof has three steps. First, given a quantity schedule, we establish the corresponding

payment rule that is necessary for incentive compatibility. Second, we optimally choose the

quantity schedule. Third, we verify that the proposed quantity schedule is non-increasing

which ensures that the payment rule is not only necessary but also sufficient12 for incentive

compatibility.

Step 1

The expected profit of hotspot provider i with cost parameter θ reporting parameter θ′ is

π(θ′, θ) = E−i

[
α̃P (θ′, θ−i)− C

(
Q(θ′, θ−i), θ

)]
.

12For proof, please see page 14 of Dasgupta and Spulber (1990).
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Incentive compatibility implies that π(θ, θ)−π(θ, θ′) ≥ π(θ, θ)−π(θ′, θ′) ≥ π(θ′, θ)−π(θ′, θ′),

or equivalently,

E−i[C
(
Q(θ, θ−i), θ

′)−C
(
Q(θ, θ−i), θ

)
] ≥ π(θ, θ)−π(θ′, θ′) ≥ E−i[C

(
Q(θ′, θ−i), θ

′)−C
(
Q(θ′, θ−i), θ

)
].

Let π(θ) ≡ π(θ, θ). Dividing both sides by θ − θ′ and taking limits as θ′ → θ, we have

dπ(θ)

dθ
= −E−i

[
Cθ

(
Q(θ, θ−i), θ

)]
,

Integrating both sides from θi to θ∗, and using the fact that π(θ∗) = 0, we have

π(θi) =

∫ θ∗

θi

E−i

[
Cθ

(
Q(θ, θ−i), θ

)]
dθ = E−i

[ ∫ θ∗

θi

Cθ

(
Q(θ, θ−i), θ

)
dθ

]

Hence, the expected payment a hotspot provider with cost parameter θi will receive must

satisfy

E−i[α̃P (θi, θ−i)] = E−i

[
C
(
Q(θi, θ−i), θi

)
+

∫ θ∗

θi

Cθ

(
Q(θ, θ−i), θ

)
dθ

]
,

and the claim on P ∗∗
i (θi, θ−i) follows.
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Step 2

We now prove the optimal quantity schedule. From the buyer’s perspective, the expected

payment to any hotspot provider is

Ei

[
E−i[P (θi, θ−i)]

]
= αE

[
C
(
Q(θi, θ−i), θi

)]
+ α

∫ θ∗

θ

(∫ θ∗

θi

E−i

[
Cθ

(
Q(θ, θ−i), θ

)]
dθ

)
dF (θi)

= αE
[
C
(
Q(θi, θ−i), θi

)]
+ α

[
F (θi)

∫ θ∗

θi

E−i

[
Cθ

(
Q(θ, θ−i), θ

)]
dθ

]∣∣∣∣θ∗
θ

+ α

∫ θ∗

θ

F (θi)E−i

[
Cθ

(
Q(θi, θ−i), θi

)]
dθi

= αE
[
C
(
Q(θi, θ−i), θi

)]
+ α

∫ θ∗

θ

E−i

[
F (θi)Cθ

(
Q(θi, θ−i), θi

)]
dθi

= αE
[
C
(
Q(θi, θ−i), θi

)]
+ αE−i

[ ∫ θ∗

θ

Cθ

(
Q(θi, θ−i), θi

)
H(θ)dF (θi)

]
= αE

[
C
(
Q(θi, θ−i), θi

)
+ Cθ

(
Q(θi, θ−i), θi

)
H(θi)

]
.

Let qi ≡ Q(θi, θ−i). The cellular service provider’s total expected cost minimization

problem can now be written as the following optimization problem:

min
qi,i=1,··· ,N

µm,m=1,··· ,M

Π = E

[
M∑

m=1

ωm

(
µm + ym

)
+ α

N∑
i=1

C(qi, θi) + α

N∑
i=1

Cθ(qi, θi)H(θi)

]
,

s.t.
M∑

m=1

µm ≤ µ,

µm ≥ 0,∀m = 1, 2, · · · ,M,

ym =
∑
i∈Em

qi, ∀m = 1, 2, · · · ,M,

where the expectation E[·] is taken over (θ1, θ2, · · · , θN) and the optimization is taken over

N +M functions of (θ1, θ2, · · · , θN): qi(⃗θ) and µm(⃗θ), ∀i = 1, · · · , N,m = 1, · · · ,M .

The degenerated structure of this variational calculus problem allows us to solve the

problem through pointwise optimization over the space of Θ. Based on this observation, we
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further simplify the problem by dividing the space of Θ into two areas,

Θ1 ≡ {(θ1, θ2, · · · , θN)
∣∣µ̂1 ≥ 0, µ̂2 ≥ 0},Θ2 ≡ {(θ1, θ2, · · · , θN)

∣∣µ̂1 < 0 or µ̂2 < 0}.

If θ⃗ ∈ Θ1, the non-negativity conditions of µm are not binding. Hence, the optimization

problem is equivalent to the one studied in Proposition 1. Therefore, the quantity schedule

from Proposition 1 is optimal when θ⃗ ∈ Θ1.

If θ⃗ ∈ Θ2, then one of the non-negativity constraints must be binding at the optimal.

Without loss of generality, assume (µ∗
1, µ

∗
2) = (µ, 0) at the optimal. The pointwise optimiza-

tion problem can be simplified as

min
q1,··· ,qN

Π = ω1

(
µ+ y1

)
+ ω2

(
y1
)
+ α

N∑
i=1

C(qi, θi) + α
N∑
i=1

Cθ(qi, θi)H(θi),

=
(
ω1

(
µ+ y1

)
+ α

∑
i∈E1

C(qi, θi) + α
∑
i∈E1

Cθ(qi, θi)H(θi)
)

+
(
ω1

(
y2
)
+ α

∑
i∈E2

C(qi, θi) + α
∑
i∈E2

Cθ(qi, θi)H(θi)
)

s.t. ym =
∑
i∈Em

qi, ∀m = 1, 2.

which is the same as that of designing two separate local auctions. Therefore, with θ ∈ Θ2,

the optimal mechanism is equivalent to holding two separate local auctions, with all cellular

resources allocated to one of the regions.

Step 3

Finally, to ensure that the payment schedule is not only necessary but also sufficient for

incentive compatibility, we need to verify that E−i[Q
∗∗
i (θi, θ−i)] is non-increasing in θi. It

suffices to show that q∗∗i = Q∗∗
i (θi, θ−i) is decreasing in θi given any θ−i. Notice that by our

assumptions on hotspot cost structure and H(θ), q∗∗i is decreasing within the region of θi

where either the global auction is optimal or the local auction is optimal. The only possible

violation of the monotonicity property is when the value of θi crosses some threshold below
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(above) which local (global) is optimal or vice versa. Clearly, if q∗∗i is continuous at such

thresholds, local monotonicity implies global monotonicity.13

To establish continuity, we first denote the region to which hotspot i belongs as region 1

and note that global auction is chosen if and only if µ̂1 = ϕ1

(
Ψ(y+µ)

)
− y1 > 0 and µ̂1 < µ,

or equivalently, −ω′
1(y1) > −Ψ(y + µ) and −ω′

1(y1 + µ) < −Ψ(y + µ). Define the threshold

θ̃i as the value of θi such that −ω′
1(y1) = −Ψ(y + µ) ≡ m̃ and the threshold θ̂i as the value

of θi such that −ω′
1(y1 + µ) = −Ψ(y + µ) ≡ m̂. Clearly, θ̃i ̸= θ̂i due to the strict convexity

of ω1(·). Denote the solution to the following equation by q̃i,

m̃ = αc(q∗∗i , θi) + αcθ(q
∗∗
i , θi)H(θi),

and the solution to the following equation by q̂i,

m̂ = αc(q∗∗i , θi) + αcθ(q
∗∗
i , θi)H(θi).

Let ϵ > 0 be small enough. Then, for any θ ∈ (θ̃i − ϵ, θ̃i + ϵ), q∗∗i is either the solution to the

equation

−Ψ(µ+ y) = αc(q∗∗i , θi) + αcθ(q
∗∗
i , θi)H(θi) (6)

or the solution to the equation

−ω′
1

(
y1
)
= αc (q∗∗i , θi) + αcθ(q

∗∗
i , θi)H(θi) (7)

Because the left-hand-side of both equation (6) and equation (7) equal m̃ at θi = θ̃i, and

that the right-hand-side of both equations is the same continuous function of θi, we have

limθi→θ̃i− q∗∗i = limθi→θ̃i+
q∗∗i = q̃i. Hence, q

∗∗
i is continuous at θ̃i. Similarly, we can show that

q∗∗i is also continuous at θ̂i. Therefore, q∗∗i is everywhere continuous and is thus decreasing

13In Lemma 2 of Online Appendix A, we prove a stronger result that a continuous and locally decreasing
function is globally decreasing, which is sufficient for the case of any M ≥ 2.
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in its range.

As we noted, the above auction mechanism has a nice economic interpretation as the

integration of global auction and local auctions. Whenever the feasibility condition is satis-

fied, the mechanism is equivalent to the optimal mechanism described in Proposition 1 which

is essentially a global auction that includes all hotspots from both regions. Whenever the

feasibility condition is violated, the optimal mechanism is to allocate all cellular capacity to

one region and to organize one local auction for each region. This integration of global and

local auctions in the optimal procurement auction is the consequence of two unique features

of procuring WiFi capacity for mobile traffic offloading: 1) the coupling of local auction

because of the existence of the more flexible cellular capacity; and 2) the heterogeneity of

demand for mobile bandwidth and supply of WiFi capacity in different regions.

It should be clarified, however, that there is only one auction, and the choice between

running a global auction and running two local auctions is endogeneously determined by the

auctioneer based on the realization of (θ1, · · · , θN). From the perspective of a hotspot, ex

ante, it does not know whether it will participate in a global auction or a local auction.

It does not need to know. What matters to a hotspot is only the payment and quantity

schedule designed by the auctioneer. Based on these schedules and its expectation of the

types of all other hotspots, it is optimal for the hotspot to truthfully report its type by our

mechanism design.

3.4 Integrating Global and Local Auctions, M > 2

With more than two regions, the basic idea of integrating multiple local auctions and one

global auction remains the same, although the optimal grouping of WiFi regions becomes

more complicated. We denote by Rg the set of regions where cellular capacity will be

allocated (i.e., regions that participate in global auction) and denote by Rl the set of regions

where cellular capacity will not be allocated (i.e., regions that participate in local auctions).

The optimal auction involves one local auction for each region in Rl where no cellular resource
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will be allocated and one global auction for all regions in Rg where all cellular resource will

be allocated.

The key is to optimally divide the set of regions into Rg and Rl. Intuitively, whether

a region—say region m—should be in Rl or Rg depends on whether the non-negativity

constraint µm ≥ 0 will be binding or not if it participates in the global auction. But we

can evaluate whether µm ≥ 0 only after we construct Rg and Rl. Because the number of

ways of dividing regions into Rg and Rl increases exponentially with the number of regions,

a brute-force approach of checking each possible division is practically infeasible. Hence, we

must find a division algorithm whose complexity is polynomial in the number of regions. To

achieve this goal, we first note in the following proposition that Rg should be as large as

possible to achieve optimality.

Proposition 4 Given M ≥ 2 and (θ1, · · · , θN), suppose there are two different schemes of

dividing the regions into global and local auctions, both of which lead to feasible allocation of

cellular capacity: If (Rg, Rl) and (R̃g, R̃l) where R̃g ⊂ Rg, then the optimal gain corresponding

to the auction design with (Rg, Rl) is larger than the optimal gain corresponding to the auction

design with (R̃g, R̃l).

Proof. We write down the optimal auction design problem with (Rg, Rl) as

min
qi,i=1,··· ,n

µm,m=1,··· ,M

Π =
M∑

m=1

ωm

(
µm + ym

)
+ α

N∑
i=1

C(qi, θi) + α
N∑
i=1

Cθ(qi, θi)H(θi),

s.t.
∑
m∈Rg

µm ≤ µ,

µm ≥ 0, ∀m ∈ Rg,

µm = 0, ∀m ∈ Rl,

ym =
∑
i∈Em

qi,∀m = 1, 2, · · · ,M.

Because R̃g ⊂ Rg, the optimal auction design problem with (R̃g, R̃l) is the same as the

above problem except with the additional constraints that µm = 0, ∀m ∈ Rg\R̃g. Clearly,
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the minimized total cost corresponding to (Rg, Rl) should be smaller than the minimized

total cost corresponding to (R̃g, R̃l).

Given that we need to find the largest possible Rg to achieve optimality, we clearly should

start with all of the regions—that is, Rg = {1, · · · ,M}. If doing this leads to infeasible

allocation of cellular capacity, we will have to shrink Rg in some way. Intuitively, we should

exclude those regions with µ∗
m < 0 from Rg to restore feasibility, which would naturally give

rise to a sequential procedure of constructing Rg and Rl. However, the main concern with

the sequential procedure is whether “exclusion” should be irreversible. In other words, if a

region is excluded from Rg, would it be beneficial to put it back into Rg at some later steps

in this sequential procedure? Our next result shows that the answer is no. The key insight is

that if a region is in Rl at some stage, then it will be in Rl in later stages had it remained in

Rg, which justifies the irreversible shrinking of Rg and guarantees the algorithm complexity

of the order of O(M).

To describe the procedure, we first introduce the notations for the k-subproblem. Let

Yk =
∑

m∈Rk
g
ym,k where ym,k =

∑
i∈Em

qi,k and qi,k is determined by the following equation:

−Ψ(Yk + µ) = αc(qi,k, θi) + αcθ(qi,k, θi)H(θi),∀i ∈
∪

m∈Rk
g

Em.

Let µ∗
m,k = ϕm

(
Ψ(Yk + µ)

)
− ym,k. Let Rk

+ ≡ {m ∈ Rk
g |µ∗

m,k ≥ 0}, and Rk
− ≡ {m ∈

Rk
g |µ∗

m,k < 0}.

Proposition 5 Given M ≥ 2 and (θ1, · · · , θN), the optimal quantity schedule q∗∗i is given

by

−Ψ
(
µ+

∑
j∈Em,m∈Rg

q∗∗j

)
= αc(q∗∗i , θi) + αcθ(q

∗∗
i , θi)H(θi),∀i ∈ Em,m ∈ Rg

−ω′
m

( ∑
j∈Em

q∗∗j
)

= αc (q∗∗i , θi) + αcθ(q
∗∗
i , θi)H(θi), ∀i ∈ Em,m ∈ Rl

where Rg and Rl are constructed through the following iterative procedure:
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• Step 0: Let k = M , RM
g = {1, 2, · · · ,M}, and RM

l = ∅.

• Step 1: If Rk
− = ∅, let Rg = Rk

g and Rl = Rk
l . Stop the procedure.

• Step 2: If Rk
− ̸= ∅, let Rk−1

g = Rk
+ and Rk−1

l = Rk
l ∪ Rk

−. Decrease k by 1 and repeat

Step 1.

The optimal payment schedule P ∗∗
i , for i = 1, 2, ...n is given by:

P ∗∗
i = α

(
C (q∗∗i , θi) +

∫ θ∗

θi

Cθ (q
∗∗
i , θ) dθ

)
. (8)

Proof. From the proof of Proposition 3, we know that the optimal mechanism is an inte-

gration of one global auction and at most M − 1 local auctions. With M > 2, the key is to

determine the optimal division of regions into Rg and Rl.

The first part of this proposition is a straightforward generalization of Proposition 3

and the proof is omitted. The second part offers an efficient algorithm for constructing the

optimal Rg and Rl with complexity of O(M).

The key to prove the effectiveness of this algorithm is to show that if a region is in Rl at

some stage, then it will always be in Rl in later stages. Therefore, at each stage, we should

shrink Rk
g by moving all of those regions in Rk

− to Rk−1
l and none of those regions in Rk

+ to

Rk−1
l . In this way, we keep Rg as large as possible (i.e., by not moving those regions in Rk

+)

while attempting to restore feasibility (i.e., by moving those regions in Rk
− to Rl).

Mathematically, we need to show that given t ∈ Rk
− and s ̸= t, if we let Rk−1

g = Rk
g\{s},

then t ∈ Rk−1
− . Note s could be in either Rk

+ or Rk
−.

Consider the k-subproblem. The WiFi capacity procurement qi,k = Q∗ (θi, θ−i), is deter-

mined by:

−Ψ(µ+ Yk) = αc(qi,k, θi) + αcθ(qi,k, θi)H(θi),∀i ∈ ∪m∈Rk
g
Em, (9)

where Yk =
∑

i∈∪
m∈Rk

g
Em

qi,k.
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In the (k − 1)-subproblem, qi,k−1, is determined by the following equation:

−Ψ(µ+ Yk−1) = αc(qi,k−1, θi) + αcθ(qi,k−1, θi)H(θi), ∀i ∈ ∪m∈Rk−1
g

Em, (10)

where Yk−1 =
∑

i∈∪
m∈Rk−1

g
Em

qi,k−1.

We first show that Yk−1 ≤ Yk by contradiction. Suppose Yk−1 > Yk, then −Ψ(µ+ Yk) >

−Ψ(µ+ Yk−1) because Ψ(·)′ > 0. Hence, the right-hand-side of equation (9) is greater than

the right-hand-side of equation (10) for all i ∈
∪

m∈Rk−1
g

Em. But αc(q, θi) + αcθ(q, θi)H(θi)

is increasing in q. Therefore, we must have qi,k > qi,k−1, ∀i ∈ ∪m∈Rk−1
g

Em, which implies

Yk =
∑
i∈Es

qi,k +
∑

i∈
∪

m∈Rk−1
g

Em

qi,k ≥
∑

i∈
∪

m∈Rk−1
g

Em

qi,k >
∑

i∈
∪

m∈Rk−1
g

Em

qi,k−1 = Yk−1.

Contradiction. Because Yk−1 ≤ Yk, we immediately see that qi,k ≤ qi,k−1, ∀i ∈ ∪m∈Rk−1
g

Em

which implies ym,k ≤ ym,k−1, ∀m ∈ Rk−1
g .

Second, we show that µ∗
m,k−1 ≤ µ∗

m,k, ∀m ∈ Rk−1
g . To see this, notice that

µ∗
m,k−1 = ϕm

(
Ψ(Yk−1+µ)

)
−ym,k−1 ≤ ϕm

(
Ψ(Yk+µ)

)
−ym,k−1 ≤ ϕm

(
Ψ(Yk+µ)

)
−ym,k = µ∗

m,k,

where the first inequality is because ϕ′
m > 0,Ψ′ > 0 and Yk−1 ≤ Yk, and the second inequality

is because ym,k ≤ ym,k−1.

Therefore, µ∗
t,k−1 ≤ µ∗

t,k < 0, or equivalently, t ∈ Rk−1
− .

4 Concluding Remarks

In the present study, we designed an optimal auction mechanism for WiFi procurement so

that cellular service providers can offload mobile data. The integration of both cellular and

WiFi resources significantly improves mobile bandwidth availability. A unique challenge in

this procurement auction is that the longer-range cellular resource introduces coupling among
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the shorter range WiFi hotspots. We solved for the optimal auction mechanism and show

that the optimal auction can be interpreted as an endogeneously determined combination of

a global auction and many local auctions.

The actual auctions and offloading to WiFi would need to be integrated with the policy

management infrastructure, which supplies some of the key variables in the auction valua-

tion: (1) the currently offered data traffic, (2) the capacity of each cell tower, and (3) the

structure of the congestion cost. The proposed procurement auction integrates all relevant

information into the supply chain through wireless networks. Our procurement mechanism

extends beyond the limits of service providers’ cellular resource to interconnect multiple

hotspots in different regions. The conventional data offloading is on the basis of the ac-

cess network discovery and selection function (ANDSF)14 that processes static WiFi offload

policies. Recently, the intelligent mobile solution company, Tekelec, Inc., has developed its

Mobile Policy Gateway (MPG)15 to implement complex WiFi offload policies. The Tekelec

MPG enables support for our smart data offloading based on the auction approach.

Our procurement auction design problem can be regarded as a sub-problem of a capacity

expansion project for a cellular service provider. Given a cellular sector, the cellular service

provider can compare the option of using WiFi capacity procurement or building a new

cell tower. By comparing the net gain (i.e., the difference between the reduced congestion

cost and the cost of capacity expansion, whether through WiFi procurement or building

tower), the service provider can select the one that yields higher net gain. In our model,

the benefit of using WiFi capacity procurement is the expected reduction of congestion

cost, which is given by E [J(0, · · · , 0)− J(y∗1, · · · , y∗M)], where y∗m is the optimal amount

of WiFi capacity procured in region m and J(y∗1, · · · , y∗M) is the corresponding congestion

cost defined in equation (1). The total payment to WiFi hotspots and the Internet ser-

vice provider is E
[∑N

i=1 P
∗∗
i (θi, θ−i)

]
. Therefore, the net gain from WiFi procurement is

14The purpose of the ANDSF is to assist user equipment to discover and select non-3GPP networks such
as WiFi and WiMax.

15See http://www.tekelec.com/2012-press-releases/tekelec-and-roke-partner-to-deliver-policyonthemobile-
solutions.aspx.
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E
[
J(0, · · · , 0)− J(y∗1, · · · , y∗M)−

∑N
i=1 P

∗∗
i (θi, θ−i)

]
. To determine the optimal amount of

cellular capacity, we assume that the cost of increasing the cellular capacity from µ to µ+µ0

is V (µ0), where V (·) is mostly likely discontinuous at 0 due to the fixed cost of building a

new cell tower. The minimized total cost from increasing cellular capacity is the optimized

objective of the following problem:

K(µ0) = min
µ0≥0

(
V (µ0) + min

µ1,··· ,µm∈R+∑
i µi≤µ+µ0

M∑
m=1

ωm(µm)

)
.

Let µ∗
0 be the optimal µ0 to the above problem. Then, the cellular service provider prefers (1)

to add µ∗
0 cellular capacity ifK(µ∗

0) < min
{
J(0, · · · , 0),E

[
J(y∗1, · · · , y∗M)+

∑N
i=1 P

∗∗
i (θi, θ−i)

]}
;

(2) to procure bandwidth from WiFi hotspots if E
[
J(y∗1, · · · , y∗M) +

∑N
i=1 P

∗∗
i (θi, θ−i)

]
<

min{J(0, · · · , 0), K(µ∗
0)}; and (3) to seek no additional capacity otherwise.

The model in the present study can also be useful for certain supply chain problems.

Consider a firm that produces multiple products using a shared resource (in-house capacity)

that is common to products 1 and 2. Because of capacity limitations, the firm also needs to

procure the products from different suppliers. Supplier 1 only produces product 1; suppliers

2, 3, and 4 only produce product 2. Because the in-house capacity is a shared resource

that can be used for all products, it is suboptimal to decompose this supply chain problem

into two independent procurement problems. Our theoretical model provides an auction

framework for the downstream firm to optimally integrate the upstream capacity with its

own product-flexible capacity.

We recognize several limitations in the present research. First, only one cellular service

provider is considered in our procurement auction. One direction for future research is to

extend our model to a setting with multiple cellular service providers. Second, we assumed

the marginal cost function of all hotspots can be approximated using a one-parameter func-

tion family. This is a simplifying assumption. It could be interesting to explore how multiple

dimensions of hotspot heterogeneity interact with the optimal auction design. Finally, our
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study focused on the supply-side reaction to congestion by assuming exogenous demand rates

to improve analytical tractability. As a future research direction, it is important to study the

demand-side reaction by estimating consumer response to congestion using empirical data.
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A Lemmas

Lemma 1 In an M/M/c queue, the expected waiting time is convex in service rate.

Proof. The expected waiting time of an M/M/c queue can be written as

W =
1

µ
+

A

µc+1 − bµc

where both A and b are constant with b < µ. Clearly, W (µ) is decreasing in µ because

d

dµ

(
1

µc+1 − bµc

)
= −(c+ 1)µc − bcµc−1(

µc+1 − bµc
)2 < 0.

For the convexity of W (µ), it suffices to show

d2

dµ2

(
1

µc+1 − bµc

)
> 0,

which is equivalent to

(
c(c+ 1)µc−1 − bc(c− 1)µc−2

)(
µc+1 − bµc

)2
< 2

(
µc+1 − bµc

)(
(c+ 1)µc − bcµc−1

)2
⇔
(
c(c+ 1)µ− bc(c− 1)

)
(µ− b) < 2

(
(c+ 1)µ− bc

)2
⇔ (c+ 1)(c+ 2)µ2 − 2bc(c+ 2)µ+ b2(c2 + c) > 0.

⇔ (c+ 1)(c+ 2)
(
µ− bc

c+ 1

)2
+

b2c

c+ 1
> 0.

Lemma 2 Let Θ ∈ R be a closed interval and f : Θ → R be a function that is locally

decreasing, that is, ∀θ ∈ Θ, there exists ϵ > 0 such that f(θ) is monotone decreasing on

[θ, θ + ϵ]. If f is continuous, then f is monotone decreasign on Θ.

Proof. Pick any θ1, θ2 ∈ Θ and assume θ1 < θ2. Let m = infθ∈Θ f(θ) and K = {θ ∈

[θ1, θ2]
∣∣f(θ) = m}. By the Weierstrass theorem, K is non-empty. Let θ̃ ≡ sup(K), then
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θ̃ ∈ K because K is closed which is due to the continuity of f . Suppose θ̃ ̸= θ2, then ∃ϵ > 0

such that θ̃ + ϵ < θ2 and

m = f(θ̃) ≥ f(θ̃ + ϵ) ≥ m.

Hence, θ̃ + ϵ ∈ K. But θ̃ ≡ sup(K). Contradiction. Therefore, sup(K) = θ2 and f(θ2) =

m ≤ f(θ1).

B An Application with Simulation

Applying our proposed auction mechanism to the network data from one of the largest

U.S. service providers, we address the following question in this section: Compared with

the standard Vickrey-Clarke-Groves (VCG) auction for mobile data offloading suggested in

the computer science literature (Dong et al. 2014), how much can our optimal procurement

auction improve the cellular network’s expected payoff? Since the VCG-type auction is

a welfare maximizing mechanism, it is not surprising that our mechanism can outperform

the standard VCG auction. However, our Monte Carlo simulation results demonstrate that

the improvement is considerable: As compared with the standard VCG auction, our pro-

curement auction significantly improves the cellular network’s expected payoff and reduces

procurement cost by more than 50%. We also evaluate the impact of the cellular capacity

and the relative cost of deploying cellular resources on the performance difference between

these two mechanisms.

B.1 Derivations with Specific Functional Forms

To compute numerical examples, we first assume the following parameterization of C(q, θi):

C(q, θi) = (0.5 + θi)q
2, which implies c(q, θi) = (1 + 2θi)q, cθ(q, θi) = 2q.

In this case, we can explicitly solve for gi(ν) as

gi(ν) =
ν

α (1 + 2θi + 2H(θi))
.
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We also assumed that

ωm(x) =
κm

x− λm

,

where κm > 0 is the weight placed on region m. Hence, ω′
m(x) = −κm(x− λm)

−2, and

ϕm(x) = λm +

√
−κm

x
.

So we have

Φ(x) =
M∑

m=1

λm +

√
−1

x

M∑
m=1

√
κm

Ψ(x) = −

(∑M
m=1

√
κm

)2
(
x−

∑M
m=1 λm

)2
Therefore, q∗ is determined by the following equation

N∑
i=1

gi


(∑M

m=1

√
κm

)2
(
µ+ q −

∑M
m=1 λm

)2
 = q.

Substituting the functional form of gi(ν), we have q
∗ as the solution to the following cubic

equation:

q

(
µ+ q −

M∑
m=1

λm

)2

=

(
M∑

m=1

√
κm

)2 N∑
i=1

1

α (1 + 2θi + 2H(θi))
.

q∗ can be solved either explicitly or by using bisection to search in the interval (0, q̄) where

q̄ is defined as

q̄ ≡
N∑
i=1

gi (−Ψ(µ)) =

(
M∑

m=1

√
κm

)2

1

(µ−
∑M

m=1 λm)2

N∑
i=1

1

α (1 + 2θi + 2H(θi))
.
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B.2 VCG Auction

Before we do the comparison, we review the multi-unit VCG auction for procurement in our

context. The VCG auction involves the following steps:

• Invite each hotspot to report its cost parameter θ. Denote the submitted cost param-

eters as (θ1, θ2, · · · , θN).

• Under the VCG mechanism, the socially efficient allocation minimizes the sum of the

expected congestion cost of the cellular service provider and the cost of hotspots.

Hence, the minimization problem can be formalized as follows:

min
q1,q2,...,qN

E
[
J

(
N∑
i=1

q∗i

)
+

N∑
i=1

C(q∗i , θi)
]

s.t. qi ≥ 0,∀i = 1, 2, · · · , N.

• Let π (θ1, θ2, · · · , θk) be the optimal value of the objective function, and let (q∗1, q
∗
2, · · · , q∗n)

be an optimal solution to the cost minimization problem. Let π−i (θ−i) be the optimal

value of the objective function with the additional constraint qi = 0 (i.e., hotspot i

does not participate in the auction).

• The cellular service provider will pay hotspot i according to the following:

Pi = π−i (θ−i)− π (θ1, θ2, · · · , θN) + C(q∗i , θi)

where π−i (θ−i)−π (θ1, θ2, · · · , θN) is the bonus payment to hotspot i, representing the

positive externality that hotspot i is imposing on the cost minimization problem. The

cellular service provider pays hotspot i its cost C(q∗i , θi), plus its contribution to the

cost minimization problem. This payment internalizes the externality.

• Hotspot i provides capacity q∗i and receives payment Pi.
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Figure 1: Area Map of A Typical Cell Sector

Note that the VCG auction is both truth-telling and socially efficient by standard ar-

guments. All hotspots bid their cost parameters truthfully, irrespective of other hotspots’

bids. The VCG mechanism guarantees the minimum total cost. However, it leads to an

overpayment to hotspots that is shown in the simulation.

B.3 Simulation

In our simulations, we consider a typical urban neighborhood in New York City, as shown in

Figure 1. We define a cell sector as the range of the cell tower. Our dataset consists of the

location information of 14,576 cell towers from a large cellular provider in the U.S. In our

simulation study, we pick a cell tower in New York City from the full list of cell towers and

simulate the mobile data demand in this sector. In Figure 1, the cell tower is represented by

the marker labelled with the letter “T”, and the 69 WiFi hotspots in the given cell sector

are represented by other markers.1 We set the communication range for a cell tower as

250m, and set the communication range for Wi-Fi as 100m. The following steps describe

the procedure of simulations:

1Locations of commercial WiFi hotspots are from http://wigle.net.
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• Generate traffic demands in the given cell sector: To gain a sense of the population

density in the coverage area of the cell tower, we use 2010 census data, which contains

the land area coverage and population density of each zip code. Combining the market

share of this service provider for the first quarter 2013,2 we estimate the number of

users in the given cell sector. On average, smartphone users consume about 1GB

data per month, but the usage patterns of mobile data is highly uneven.3 Paul et al.

(2011) and Jin et al. (2012) found that a small number of heavy users contribute to a

majority of data usage in the network. To consider the heterogeneity of data usage and

the effects of peak hours, we simulate individual data usage from the byte distribution

in Jin et al. (2012).4

• Generate WiFi regions in the cell sector: Dong et al. (2014) showed that the appropriate

number of WiFi regions in a cell sector is six. Following their approach, we generate

six WiFi regions by clustering the WiFi hotspots using k-means. In Figure 1, Region

A, Region B, ... , and Region F indicate which region the WiFi hotspots belong to.

• Generate traffic demands in each WiFi region: We use two different methods to place

users in the cell sector and assign them to the corresponding WiFi regions according

to their locations. (1) All users are randomly placed in the cell sector. (2) All users are

placed according to the densities of the hotspots.5 After placing all the users, a nearest

hotspot is calculated for each user location. If the distance between the nearest hotspot

found and the user location is less than the hotspot range (100m), the user is counted

2See http://www.talkandroid.com/159929-t-mobile-loses-market-share-while-verizon-and-att-continue-
to-dominate.

3See http://www.fiercewireless.com/special-report/average-android-ios-smartphone-data-use-across-tier-
1-wireless-carriers-through.

4We obtain the quantiles of the byte distribution from Jin et al. (2012) and generate inidvidual us-
age using the Johnson System. We also adjust the usage by considering the effect of peak hours, see
http://chitika.com/browsing-activity-by-hour.

5To calculate the densities of the hotspots for different locations, we divide the square circumscribing the
cell sector into a 20 by 20 array of grids. By default, each grid has a weight of 1, except the grids whose
centers are not in the range of the tower. The grid’s weight is increased by the number of hotspots whose
locations are inside the grid. Then, a list of grid indices is created according to the weight of each grid.
Finally, for each user, a grid index is first uniformly chosen from the list, and then the location of the user
is uniformly chosen from the range of the grid with the grid index just picked.
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Figure 2: Performance Comparison of the Procurement Mechanisms for the Service Provider

as one of the regional population according to the WiFi region; otherwise, the user is

considered as in the region with no hotspots (region 0). We run 1,000 simulations to

generate traffic demands in each WiFi region.

• Generate cell tower capacity: The cell tower capacity is set to three times 3.84 MHz

(Dong et al. 2014). Data spectral efficiency varies across towers from 0.5 to 2 bps/Hz.6

We set spectral efficiency to be 1 by default and then vary the spectral efficiency to

evaluate its impact. Note that when the user demand for mobile data is below 80% of

the cell tower capacity, the cellular service provider faces no congestion cost.

We conduct a variety of simulations to compute the corresponding allocation under the

VCG mechanism and under our optimal mechanism. The relative cost of deploying cellular

resources as compared with WiFi resources affects the bandwidth allocation result. Joseph

et al. (2004) assumed that the relative cost of deploying cellular resources as compared

with WiFi resources is 4:1. We follow their assumptions and set the parameter values:

ωm (µm + ym) = 0.5a
(

1
µm+ym−λm

)
where a is set to 4 and C (Q, θi) = (0.5 + θi)Q

2. In the

simulation, we vary the relative cost parameter a and find that the results are robust. A

hotspot’s private cost parameters θi is drawn from a uniform distribution U [0, 1] for 1,000

6See http://www.rysavy.com/Articles/2011 05 Rysavy Efficient Use Spectrum.pdf.
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Figure 3: Performance Difference and Cell Tower Capacity (Left); Performance Difference
and Relative Cost of Deploying Cellular Resources (Right)

times.

The simulation result of the performance comparison is shown in Figure 2. In the left

panel, the users are randomly placed in the cell sector. In the right panel, the users are

placed according to the densities of the hotspots. The two panels show similar results: our

proposed procurement auction significantly outperforms the VCG mechanism in terms of

the expected net gain of the cellular service provider (the expected net gain = the reduction

of congestion cost - the payment to hotspots).

Data spectral efficiency varies across cell towers using different wireless technologies. An

increase in spectral efficiency significantly contributes to tower capacity. The left panel of

Figure 3 evaluates the impact of spectral efficiency (cell tower capacity) on the performance

difference, which is defined as the difference between the service provider’s expected net gain

under the proposed mechanism and the gain under the VCG mechanism.7 Note that the

unit of the performance difference is normalized, and we are only interested in the trend.

As the cellular capacity increases, the advantage of our proposed mechanism, in comparison

with the VCG mechanism, decreases. This is because the bandwidth purchased from the

WiFi hotspots also decreases as cellular capacity increases, as is indicated by the dashed line

7The simulation results are similar when the users are randomly placed or are placed according to the
densities of the hotspots, so here we only present the result when the users are randomly placed.
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in the left panel of Figure 3. The service provider is less willing to purchase WiFi resources

when it owns a relatively large cellular capacity, and the overpayment problem in the VCG

mechanism is thus less severe.

The right panel of Figure 4 shows that as a increases, the advantage of our mechanism as

compared with the VCG mechanism increases, which is expected because, with congestion

being more costly, the service provider is more willing to procure from the WiFi hotspots,

thereby exacerbating the overpayment problem in the VCG mechanism.

C Cellular Technology and Broadband Technology

We elaborate the differences between broadband technology and cellular technology from

the two perspectives.

(1) Broadband Technology

With the rapid deployment of fiber optics, broadband capacity constraints are gradually

becoming less of an issue, even as the consumption of online content continues to grow at

a rapid pace. More specifically, our assumption was guided by the fact that over the past

years, broadband providers have increased capacity, and thanks to rapid advances in fiber

technology (whose rate of growth is even faster than Moore’s Law in semiconductors; at the

same time, the networking equipment have been getting cheaper by around 25-40% every

year following Moore’s Law), broadband providers have been able to increase capacity at

a very low cost, even as consumers have increased their consumption for online content.

The cost of provisioning the marginal customer at large broadband providers today is less

than $1/month: about half of that cost is till the point of peering (the “backhaul” cost, in

industry terminology), and the other half is incurred while carrying the data from the point

of peering to the local exchange. Thus, broadband capacity has not been a bottleneck even

as consumption for data has increased. Choi et al. (2014) highlighted the difference between

fixed and mobile networks: Mobile networks encounter technical and physical constraints in
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expanding capacity due to the limited availability of spectrum. The Federal Communications

Commission (FCC) also stated the difference: “Mobile broadband is an earlier-stage platform

than fixed broadband, ..., Mobile broadband speeds, capacity, and penetration are typically

much lower than for fixed broadband. ... In addition, existing mobile networks present

operational constraints that fixed broadband networks do not typically encounter.” (FCC

Order, page 94-95).

An independent verification that broadband capacity is not a bottleneck comes from

empirical observations. FCC comes out with an annual state of the broadband report ev-

ery year (called “Measuring Broadband America”), and the latest report that is available

currently is for the year 2014. In this report, one of the performance metrics that the Com-

mission measures is the “24 Hour versus Peak Performance Variation by Technology.” The

data shows that there is hardly any dip in performance during peak periods (for example,

for fiber, during peak periods, the performance drops from an average 115% of advertised

speeds to 112% of the advertised speed during peak hours; for cable, the drop is from 105%

of advertised speeds to 101%; and for DSL, the drop is from 95% to 91%), and these numbers

have arguably become better since (currently, the FCC has the raw data available for the

2015 report on its website). Therefore, broadband providers are gradually becoming more

able to handle their peak load without any degradation in speed of delivery.

(2) Cellular Technology

The cellular capacity is determined by amount of spectrum, number of cell towers, and

spectral efficiency of technology, as is illustrated in the following figure which is from Rysavy-

Research (2014).

Spectrum is a limited and finite resource for mobile networks (Rysavy-Research 2014).

In the U.S., cellular systems use roughly 500 MHz, although an individual operator’s access

to spectrum is much smaller and is subject to spectrum aggregation rules. On the other

hand, wired network can access far more frequencies in the mediums (e.g., coax cable, fiber-

optic cable, etc.) they use, and they can carry their spectrum within the physical medium
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with near-complete control. Once the capacity of one cable is exhausted, another one can

be placed alongside. This is in stark contrast with wireless networks which rely on the

propagation of signals through the air and the same frequencies cannot be used without

interference until some distance away.

Because of the finiteness of the spectrum resource, obtaining radio spectrum is very

costly: In the United States, the Federal Communications Commission (FCC) conducts

competitive auctions of licenses for electromagnetic spectrum. Since July 1994, the FCC

has conducted 87 spectrum auctions, which raised over $60 billion for the U.S. Treasury

(Cramton et al. 2002). Therefore, additional radio spectrum is not always available and

obtaining it from spectrum auctions is expensive. Additionally, due to antitrust concerns in

the wireless industry, several influential economists suggested that FCC should place limits

on how much spectrum AT&T and Verizon are allowed to buy (Cramton et al. 2007). Such

concern is reflected in the action taken by the FCC to block the merger between AT&T and

T-Mobile in 2011. Due to these regulatory constraints, it is very difficult for cellular service

providers to acquire additional spectrum resources.

Given limited spectrum, the cellular industry has been using sophisticated modulation

and encoding methods to extract as much capacity as possible from available spectrum to

meet the growing demand from mobile users. However, today’s networks already operate

at close to maximum theoretical spectral efficiency constrained by the laws of physics. It is

also far more challenging to increase efficiency in radio technology than to increase efficiency

in wire or fiber cables because radio connections in open environment have more noise than

shielded wires.

Although building more cell towers can also increase wireless capacity, building a new cell

tower is very expensive and time consuming. In the United States, the number of cell towers

increased from 12,824 in 1993 to 304,360 in 2013. However, the increased number of cell

towers has not allowed capacity to come even close to matching the capacity of wired network.

Some industry expert estimates that it will cost at least $150,000 to construct a tower.
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Moreover, there are health concerns on the radiation from cell towers. Many governmental

bodies require that cellular service providers share cell towers so as to decrease environmental

and cosmetic impact. This issue is an influential factor of rejection of installation of new

cell towers in communities. For example, in February 2009, the French telecom company

Bouygues Telecom was ordered to take down a cell tower due to uncertainty about its effect

on health. Residents in the commune Charbonnieres in the Rhone department had sued the

company claiming adverse health effects from the radiation emitted by the 19-meter-tall cell

tower.

Because of the unique characteristics of the information and communications technology

(ICT) industries, broadband capacity has not been a constraining factor in the past several

years. In contrast, cellular capacity is limited by the finite amount of radio spectrum and the

inherent limitations of radio as a medium. Even with a breakthrough in cellular technologies

in the near future, cellular capacity will still be limited by various regulatory constraints,

which is less of an issue for broadband because it does not rely on radio spectrum and cell

towers.
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