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Motivation

Substitute Goods/Tasks

.

......

Substitute goods/tasks are goods/tasks which may replace
each other in consumption or fulfillment.

The advance in Internet technology and the growth of sharing
economy has created massive number of substitute
goods/tasks of different types.

The demand for such substitute goods/tasks may also be
massively heterogeneous.
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Motivation

Massively Substitute Goods

.
Objectives
..

......

Provide a theory for pricing massive number of types of
substitute goods given the heterogeneous preferences.

Develop a scalable algorithm for efficiently allocating such
goods and deriving the corresponding prices.

.
Negishi (1960)
..

......

A competitive equilibriuma is a maximum point of a social welfare
function that consists of a linear combination of utility functions of
consumers.

aA competitive equilibrium refers to an allocation and a set of prices such that the
allocation is feasible and non-negative and all price-taking agents find their respective
allocation optimal.
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Allocation and Pricing of Substitute Goods: Theory and Algorithm

Model Setup

Goods, Agents, and Allocation

.
Goods
..

......

There are a set of M types of goods M = {1, 2, · · · ,M}. The
supply is w = (w1,w2, · · · ,wM).

.
Agents
..

......

There are a set of N agents N = {1, 2, · · · ,N} who value the M
types of goods.

.
Allocation
..

......

x =


x11 x12 · · · x1M
x21 x22 · · · x2M
...

...
...

...
xN1 xN2 · · · xNM


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Model Setup

Preferences and Constraints

.
Preferences
..

......

Ui (xi) =Qi

(
M∑

m=1

αimxim

)
, ∀i ∈ N (1)

Assumption: Qi (·) is increasing and concave.

.
M Feasibility Constraint
..

......

∑
i∈N

xim ≤ wm, ∀m ∈ M

.
M × N Non-negative Constraint
..

...... xim ≥ 0, ∀i ∈ N , m ∈ M
7 / 51



Allocation and Pricing of Substitute Goods: Theory and Algorithm

Model Setup

Nonlinear Allocation with Substitution (NAS)

max{xim} S =
∑
i∈N

Ui (xi) =
∑
i∈N

Qi

(∑
m∈M

αimxim

)
(2)

s.t.
∑
i∈N

xim ≤ ωm, ∀m ∈ M (3)

xim ≥ 0,∀i ∈ N , m ∈ M (4)

.
Optimality
..

......

An allocation x is optimal if and only if x satisfies (3) and (4), and
there exists a shadow price vector (λ1, λ2, ..., λM) such that{

xim > 0 ⇒ ∂Qi (xi )
∂xim

= λm

xim = 0 ⇒ ∂Qi (xi )
∂xim

≤ λm

, ∀i ,m (5)
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Model Setup

How about Convex Optimization?
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Model Setup

How about Convex Optimization?
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Model Setup

Example 1

.
Participants’ Profiles and Supply
..

......

Qi (x) = Vi

(
1− e−

∑4
m=1 αimxim

)

V =


2
1
1.5
1.2

 , α =


0.30 0.16 0.10 0.20
0.20 0.50 0.12 0.05
0.13 0.10 0.40 0.08
0.06 0.10 0.20 0.30

 , w =


12
8
6
6

 .
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Model Setup

Pareto Optimality

x0 =


5.4368 5.0289 1.3382 3.8107
2.6622 2.5018 0 0
3.9009 0.4693 3.0811 0

0 0 1.5807 2.1893

 , S = 4.7556.

What if participant 1 gives one unit of type 2 impression to
participant 2 in return for one unit of type 1 impression?

Both will be better off and the social welfare will increase to
4.8085.

x∗ =


11.823 0 0 0

0 6.7119 0 0
0.177 0 6 0
0 1.2881 0 6

 , S = 5.3001
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Theory

Indicator Matrix

Indicator Matrix

.

......

An indicator matrix I is an N ×M matrix with binary elements
δim ∈ {0, 1}. An allocation x is restricted by I, denoted as x ∈r I, if

δim = 0 ⇒ xim = 0, ∀i ,m

.
Example 2
..

......

I∗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I1 =


1 1 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I2 =


1 1 0 0
0 1 0 0
1 0 1 1
0 1 0 1


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Theory

Indicator Matrix

Indicator Matrix and RNAS

Given an indicator matrix I, we can define a restricted NAS
problem:

(RNAS) max
{xim}

∑
i∈N

Qi

(∑
m∈M

αimxim

)
s.t.

∑
i∈N

xim ≤ ωm, ∀m ∈ M

xim ≥ 0, ∀i ∈ N , m ∈ M
x ∈r I
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Theory

Indicator Matrix

Optimality and Pareto Optimality

.
Definition
..

......

An indicator matrix I is said to be optimal if the solution to an
NAS problem restricted by I also solves the original NAS
problem.

An indicator matrix I is said to be Pareto optimal if all
allocations restricted by I are Pareto optimal.
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Theory

Price Ratio Vector

Price Ratio Vector

A strictly positive vector p = (p1, p2, · · · , pM) is a price ratio
vector for an indicator matrix I if for any i ∈ N , m, n ∈ M,

αim

αin
≥ pm

pn
,whenever δim = 1 (6)

Intuitively, if price ratios between different types of goods are
defined by p, no agent would be interested in trading her
currently allocated goods for any other type of goods.

If p is a price ratio vector, so is λp for any λ > 0. We say the
price ratio vector for I is unique if all the price ratio vectors for
I are proportional to each other.
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Theory

Price Ratio Vector

Existence and Uniqueness of Price Ratio Vector

.
Example 3
..

......

Given the participants’ profiles in Example 1 and I∗, I1, I2 below,

I∗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I1 =


1 1 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I2 =


1 1 0 0
0 1 0 0
1 0 1 1
0 1 0 1


Any vector r = (13, r , 40, 3r) with 10 ≤ r ≤ 20 is a price ratio
vector for I∗;

There is no price ratio vector for I1 and I2.
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Theory

Price Ratio Vector

Pareto Optimality and Price Ratio Vector

.
Theorem 1
..

......

An indicator matrix I is Pareto optimal if and only if there exists a
price ratio vector for I.

.
Comments
..

......

Theorem 1 suggests any Pareto-optimal allocation supports a
price ratio vector.

Later we show that if a Pareto-optimal indicator matrix is
optimal, then one of its price ratio vectors is proportional to
the competitive equilibrium price vector.
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Theory

Standardization

Theorem 2

Let I be a Pareto-optimal indicator matrix and p be an associated
price ratio vector. Define the supply ωz and valuation functions
Qz

i (·) , i ∈ N , for a“standardized” type as:

ωz ≡
∑
m∈M

ωmpm (7)

Qz
i (zi ) ≡

{
Qi

(
αim
pm

zi

)
, if there exists some m such that δim = 1

0, otherwise

(8)
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Theory

Standardization

Theorem 2 (continued)

Let z∗ be the solution to the following standardized single-type
NAS problem

max
{zi}

∑
i∈N Qz

i (zi ) (9)

s.t.
∑

i∈N zi ≤ ωz , zi ≥ 0, ∀i ∈ N

and x be an allocation restricted by I that satisfies the following
system of linear equations:{∑

m∈M,δim=1 pmxim = z∗i , ∀i ∈ N∑
i∈N ,δim=1 xim = ωm, ∀m ∈ M

. (10)

The allocation x is a solution to the original NAS problem if it is
non-negative.
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Theory

Standardization

Implications of Theorem 2

.

......

Given a price ratio vector, we can convert a multi-type NAS
problem to a standard single-type one, a huge reduction of
dimension!

In the standardized economy, the total supply is the sum of
supplies of all types weighted by the price ratio vector. The
system of linear equations allows us to recover an allocation x
restricted by I.

If both I and the associated p are chosen“correctly”, the
allocation x recovered from the standard single-type NAS
problem is a solution to the original NAS problem and p is
proportional to the competitive equilibrium prices (or shadow
prices for M types of goods).
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Theory

Standardization

Implications of Theorem 2

.
Five-step procedure
..

......

Identify a Pareto-optimal indicator matrix I;

Use a price ratio vector for I to do standardization;

Solve the standardized sing-type NAS problem;

Solve the system of linear equations for the original allocation;

Check the non-negativity of the solution.

.
Challenges
..

......

How to obtain a price ratio vector from a PO indicator matrix

Solution: Regularity

How to find the first (or the next) PO indicator matrix

Solution: SIMS algorithm
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Theory

Connectivity

Connectivity

.
Definition
..

......

Typies m and n are connected via agent i , denoted as m
i⇌ n, if

agent i is permitted to hold both m and n under indicator matrix I.

.
Connectivity Graph
..

......

Based on the connectivity information in I, we can construct a
undirected connectivity graph G in which

each node represents a type, and

An edge with label i exists between nodes m and n if
δim = δin = 1.

Note that multiple edges with different labels can exist between a
pair of nodes.
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Theory

Connectivity

Connectivity Graph

.

......

I∗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1



..1. 3.
3

.

2

.

4

.

4

Figure 1 : The connectivity graph of I∗
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Theory

Connectivity

Connectivity

An indicator matrix I is connected if the connectivity graph
generated by I is connected.
.
Which of the following indicator matrix is connected?
..

......

I∗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I1 =


1 1 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I2 =


1 1 0 0
0 1 0 0
1 0 1 1
0 1 0 1


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Theory

Connectivity

Connectivity Graph

..1. 3.

2

.

4

. 3.

4

.

1

(a) The connectivity graph of I1

..1. 3.

2

.

4

. 3.

3

.

3

.

4

.

1

(b) The connectivity graph of I2
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Theory

Regularity

Example 4

Consider an example with two agents and two types of goods. Let

U1 (x1) = Q1 (x11 + x12) , U2 (x2) = Q2 (x21 + βx22) .

Consider five connected indicator matrices

Ia =

[
1 1
1 1

]
, Ib =

[
1 1
1 0

]
, Ic =

[
0 1
1 1

]
,

Id =

[
1 1
0 1

]
, Ie =

[
1 0
1 1

]
.

We can rule out Ia without sacrificing optimality.
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Theory

Regularity

Regularity

.
Definitions
..

......

Given an indicator matrix I, a type m has a regular connection
with a connected component S (m /∈ S) if

m is connected to at least one member of S ,
all of m’s connections to S are via the same agent.

A connected indicator matrix I is regular if each type has a
regular connection with each of the connected components
among the remaining types.

An indicator matrix I is regular if all of its connected
components are regular.
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Theory

Regularity

Regularity

.
Which of the following indicator matrix is regular?
..

......

I∗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I1 =


1 1 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , I2 =


1 1 0 0
0 1 0 0
1 0 1 1
0 1 0 1


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Theory

Regularity

Proposition

Let I be a connected and regular indicator matrix. Suppose there

are L connections in I: m1
i1↔ n1, m2

i2↔ n2, ..., mL
iL↔ nL. Then

there exists a vector p = (p1, p2, · · · , pM), called a pseudo price
ratio vector, that satisfies the following L equations:

pml

pnl
=

αilml

αilnl

, ∀l = 1..L. (11)

Such a pseudo price ratio vector is unique (in the same sense of
uniqueness as a price ratio vector). Furthermore, if I is also Pareto
optimal, then the pseudo price ratio vector is the unique price ratio
vector for I.
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Theory

Regularity

Theorem 3

.

......

If a Pareto-optimal allocation x is not regular, then there exists a
regular Pareto-optimal allocation x′ such that all agents are
indifferent between x and x′.

..P. R.

Pareto Optimal

.

Regular

.

S = P ∩ R

. S
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Theory

Regularity

Implications of Theorem 3

.

......

Since the optimal allocation must be Pareto optimal and each
Pareto-optimal allocation must have an equivalent regular
allocation, it is sufficient to search among regular indicator
matrices.

Theorem 3 plays a similar role in solving NAS as the
fundamental theorem of linear programming does in solving
linear programming problems.

.
Proposition
..

......

If the indicator matrix I is regular, then there exists a unique
solution to the system of linear equations defined by (10), where p
is a pseudo price ratio vector for I.
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Algorithm

Standardization

Decomposition

Suppose the connectivity graph has J (1 ≤ J ≤ M) connected
components.

We let Mj be the nodes in the jth component and Nj be the
set of affiliated agents – that is, agents who may hold at least
one type in Mj .

By construction, each agent is affiliated with at most one
component.

Let Ij denote a submatrix of I that consists of rows Nj and
columns Mj .

In this way, we decompose the original problem into J
subproblems.

In the j-th sub problem, we allocate typies Mj among agents
Nj , subject to indicator matrix Ij that generates a connected
connectivity graph.
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Algorithm

Standardization

Example 4

.

......

We illustrate the steps of our standardization technique using the
profile in Example 1 and the Pareto optimal indicator matrix I∗

below,

I =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 .

V =


2
1
1.5
1.2

 , α =


0.30 0.16 0.10 0.20
0.20 0.50 0.12 0.05
0.13 0.10 0.40 0.08
0.06 0.10 0.20 0.30

 , w =


12
8
6
6

 .
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Algorithm

Standardization

Step 1: Decomposition

The first step is to decompose I into two submatrice.

I1 :
Type 1 Type 3

Participant 1 1 0
Participant 3 1 1

I2 :
Type 2 Type 4

Participant 2 1 0
Participant 4 1 1
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Algorithm

Standardization

Standardization

.
Subproblem I2..

......

Based on α42 and α44, we have r2 = 1, r4 = 3

The standardized supply of impressions is ẃ = 8r2 + 6r4 = 26.

Participant 2 and 4’s utility functions for standardized
impressions are

ú2(x́2) = 1− e−0.5x́2 , ú4(x́4) = 1.2
(
1− e−0.1x́4

)
.

The optimal allocation for this homogeneous problem is

x́∗2 = 6.7119, x́∗4 = 19.2881.
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Algorithm

Standardization

Standardization

.
Recovering the Original Allocation
..

......

 1 0 0
0 1 3
1 1 0

 x22
x42
x44

 =

 6.7119
19.2881

8


where

the first two equations are feasibility condition for each
participant regarding the conversion between the original
allocation and the allocation for standardized impressions.
The third equation is the feasibility condition for type 2
impression.

The solution to the above system of linear equations is:(
x22 x24
x42 x44

)
=

(
6.7119 0
1.2881 6

)
.
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Algorithm

Standardization

Combining Solutions of the Subproblems

.
Subproblem I1..

......

With similar procedure we have(
x11 x13
x31 x33

)
=

(
11.823 0
0.177 6

)
.

.
Optimal Allocation
..

......

x∗ =


11.823 0 0 0

0 6.7119 0 0
0.177 0 6 0
0 1.2881 0 6

 , S = 5.3001
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Algorithm

Indicator Matrix Search

How to Search for the Optimal I∗

If δim = 1 and xim < 0, we adjust I by setting δim = 0;

If δim = 0 and ∂Qi
∂xim

> λm, we adjust I by setting δim = 1.

Adjust one element of I a time;

Adjust the element of I that is most unbalanced first;

Ensure the regularity of I after each adjustment.
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Algorithm

Indicator Matrix Search

Example 5 – Initialization

Set the initial indicator matrix I such that δij = 1 if and only if
Viαij ≥ Vkαkj , ∀k ∈ N .

I0 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

 ,X 0 =


12 0 0 6
0 8 0 0
0 0 6 0
0 0 0 0

 ,

MU0 =


0.0049378 0.0026335 0.0016459 0.0032919
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.072000 0.12000 0.24000 0.36000


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Algorithm

Indicator Matrix Search

Example 5 – Iteration 1

I1 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,X 1 =


12 0 0 −3.3893
0 8 0 0
0 0 6 0
0 0 0 9.3893



MU1 =


0.032291 0.017222 0.010764 0.021527
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.0043055 0.0071758 0.014352 0.021527



43 / 51



Allocation and Pricing of Substitute Goods: Theory and Algorithm

Algorithm

Indicator Matrix Search

Example 5 – Iteration 2

I2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,X 2 =


12 0 0 0
0 8 0 0
0 0 6 0
0 0 0 6



MU2 =


0.016394 0.0087436 0.0054647 0.010929
0.0036631 0.0091578 0.0021979 0.00091578
0.017690 0.013608 0.054431 0.010886
0.011902 0.019836 0.039672 0.059508


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Algorithm

Indicator Matrix Search

Example 5 – Iteration 3

I3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 ,X 3 =


12 0 0 0
0 6.7119 0 0
0 0 6 0
0 1.2881 0 6

 ,

MU3 =


0.016394 0.0087436 0.0054647 0.010929
0.0069754 0.017438 0.0041852 0.0017438
0.017690 0.013608 0.054431 0.010886
0.010463 0.017438 0.034877 0.052315


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Algorithm

Indicator Matrix Search

Example 5 – Iteration 4

I4 =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ,X 4 =


11.823 0 0 0

0 6.7119 0 0
0.177 0 6 0
0 1.2881 0 6

 ,

MU4 =


0.017288 0.0092202 0.0057626 0.011525
0.0069754 0.017438 0.0041852 0.0017438
0.017288 0.013298 0.053193 0.010639
0.010463 0.017438 0.034877 0.052315

 .
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Performance

Convergence
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Convergence
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Comparison with MOSEK (N = 100)
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Comparison with CVXOPT andLOQO (N = 50)
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Thank you!

..

Question

.
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.
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.
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