

Optimal Securitization with Heterogeneous Investors

Semyon Malamud

EPF Lausanne

Swiss Finance Institute

Huaxia Rui

UT Austin

Andrew Whinston

UT Austin

Econometric Society World Congress
Shanghai, August 17, 2010

Optimal Security Design

- ▶ Risk Sharing
 - Allen and Gale (1989), Whinton (1995)
- ▶ Liquidity and Asymmetric Information
 - Gorton and Pennachi (1990), Boot and Takor (1993), DeMarzo and Duffie (1999), Fulghieri and Lukin (2001), DeMarzo (2005), Axelson (2007)
- ▶ Moral Hazard
 - Hartman-Glaser, Piskorski, and Tchistyi (2009), Tchistyi (2009), and Piskorski and Tchistyi (2009)

The Model

- ▶ time periods $t = 0, 1$
- ▶ issuer S has
 - cash flows X at time 1 with $\text{esssup} X = \bar{X}$
 - income stream (w_0, w_1)
 - utility

$$u_S(c_{0S}) + e^{-\rho_S} E[u_S(c_{1S})]$$

- ▶ N heterogeneous investors
- ▶ investor i has
 - endowment (w_{0i}, w_{1i})
 - utility

$$u_i(c_{0i}) + e^{-\rho_i} E[u_i(c_{1i})]$$

The Problem of Security Design. I

- ▶ the issuer creates a basket $F_i, i = 1, \dots, N$ of limited-liability securities backed by the asset X
- ▶ no asymmetric information
- ▶ limited liability for investors: $F_i \geq 0$
- ▶ limited liability for the issuer

$$F = \sum_{i=1}^N F_i \leq X.$$

- ▶ the issuer retains the residual cash flow $X - F$.

The Problem of Security Design. II

- ▶ the issuer is a monopolist
- ▶ he offers a security F_i to investor i , and the investor offers him the price $P_i = P_i(F_i)$
- ▶ variable cost of issuance: $C_i = \alpha P_i$ for some $\alpha \in (0, 1)$
- ▶ investor i takes any contract satisfying the participation constraint

$$u_i(c_{0i}) + e^{-\rho_i} E[u_i(c_{1i})] \geq L_i,$$

- ▶

$$c_{0i} = w_0 - P_i, \quad c_{1i} = w_{1i} + F_i(X)$$

is the investor's consumption after entering the contract

- ▶

$$L_i = u_i(w_{0i}) + e^{-\rho_i} u_i(w_{1i})$$

is the investor's reservation utility

The Problem of Security Design. III

- ▶ monopolistic price

$$P_i(F_i) = w_{0i} - v_i(L_i - e^{-\rho_i} E[u_i(w_{1i} + F_i(X))]),$$

where v_i is the inverse of the investor's utility,

$$v_i(u_i(x)) = x.$$

- ▶ given the contracts (P_i, F_i) , $i = 1, \dots, N$, the issuer's consumption is given by:

$$c_{0S} = w_0 + (1 - \alpha) \sum_{i=1}^N P_i, \quad c_{1S} = w_1 + X - F(X)$$

- ▶ the issuer's securitization problem is to design the basket (F_i) so as to maximize his utility,

$$u_S(c_{0S}) + e^{-\rho_S} E[u_S(c_{1S})]$$

Solution to the Single Investor Problem. I

- $g(a, x)$ is the unique solution to:

$$a u'_B(w_{1B} + g) - u'_S(w_1 + x - g) = 0$$

Theorem

(1) If

$$\rho_S - \rho_B > K_{\max},$$

then full selling is optimal,

$$F(X) = X;$$

(2) if

$$K_{\max} > \rho_S - \rho_B > K_{\text{mid}},$$

then

$$F_a(X) = \begin{cases} X & , X \leq Z(a) \\ g(a, X) & , X > Z(a) \end{cases};$$

Solution to the Single Investor Problem. II

(3) if

$$K_{\text{mid}} > \rho_S - \rho_B > K_{\text{min}},$$

then

$$F_a(X) = \begin{cases} 0 & , X \leq Z(a) \\ g(a, X) & , X > Z(a) \end{cases} ; \text{ and}$$

(4) if

$$K_{\text{min}} > \rho_S - \rho_B,$$

then there is no trade, that is, $F(X) = 0$.

Finding the threshold

$$Z(a) = \begin{cases} I_B(a^{-1}u'_S(w_1)) - w_{1B} & \text{in case (2)} \\ I_S(a u'_B(w_{1B})) - w_1 & \text{in case (3)} \end{cases},$$

and a is the unique solution to

$$a = \frac{(1 - \alpha) e^{\rho_S} u'_S (w_0 + (1 - \alpha) P_B(F_a(X)))}{e^{\rho_B} u'_B (w_{0B} - P_B(F_a(X)))},$$

where P_B is given by (6).

Marginal Rate of Intertemporal substitution

$$\pi_B u'_B(c_{0B}) = e^{-\rho_B} u'_B(c_{1B}) \Leftrightarrow \pi_B = \frac{e^{-\rho_B} u'_B(c_{1B})}{u'_B(c_{0B})}.$$

► marginal trade happens if

$$\pi_B \geq \pi_S.$$

Security Slope

- ▶ slope

$$\frac{d}{dx} F_a(X) = \frac{R_B(c_{1B})}{R_B(c_{1B}) + R_S(c_{1S})},$$

- ▶ absolute risk tolerance

$$R_K(x) = -\frac{u'_K(x)}{u''_K(x)}, \quad K = B, S.$$

- ▶ if the seller is risk-neutral then F is a standard debt:

$$F(X) = \min(X, d)$$

for some $d \geq 0$

Heterogeneous Investors

Proposition

- ▶ If all investors are risk neutral, then only the investor with the lowest discount rate will participate in a trade.
- ▶ If investors are risk averse and \bar{X} is sufficiently large, then all investors will get a non-zero part of X .

Maximal Marginal Rates of Intertemporal Substitution (MMRIS)

- ▶ investors' MMRIS

$$Y_i = \frac{e^{-\rho_i} u'_i(w_{1i})}{u'_i(c_{0i})}$$

- ▶ issuer's MMRIS

$$Y_S = \frac{e^{-\rho_S} u'_S(w_1)}{(1 - \alpha) u'_S(c_{0S})}.$$

- ▶ Lagrange multipliers

$$a_i \stackrel{\text{def}}{=} \frac{e^{\rho_S} (1 - \alpha) u'_S(c_{0S})}{e^{\rho_i} u'_i(c_{0i})} = \frac{Y_i e^{\rho_S} (1 - \alpha) u'_S(c_{0S})}{u'_i(w_{1i})}$$

Investors Ranking

For an investor i , we denote by $\text{rank}(i)$ the number that the investor will have when all investors are reordered so that Y_i are increasing in i .

J the number of investors for which Y_i is smaller than Y_S .

Solution to the Optimal Securitization Problem I.

There exist thresholds

$$0 = Z_{N+1} \leq Z_N \leq \cdots \leq Z_1 \leq Z_0 = \bar{X}$$

such that

- (1) If $Y_i < Y_S$, then the investor i only participates in tranches $\text{Tranche}_j = [Z_{j+1}, Z_j]$ with indices $j \leq \text{rank}(i) - 1$;
- (3) If $Y_i \geq Y_S$, then the investor i only participates in tranches Tranche_j with indices $j \leq \text{rank}(i)$;
- (4) The issuer fully sells the part of X below Z_{J+1} and retains a part of X for $X > Z_{J+1}$. That is,

$$F(X) = \sum_i F_i(X) = X$$

if $X \leq Z_{J+1}$ and $F(x) < x$ otherwise

Inside Tranche $_j$:

- ▶ if $j \leq J$ then investors i with $rank(i) \geq j + 1$ and the issuer S share Tranche $_j$ in a Pareto-efficient way
- ▶ if $j > J$ then investors i with $rank(i) \geq j$ share the (fully sold) Tranche $_j$ in a Pareto-efficient way
- ▶ thus, optimal securities have a *subordinated structure*

Monotonicity

Proposition Optimal securities F_i and the retained part $X - F(X)$ are continuous and (weakly) monotone increasing in X ;

Example.

Suppose that there are three investors with

$$Y_1 < Y_S < Y_2 < Y_3 .$$

Then, $J = 1$ and

$$\bar{X} = Z_0 > Z_1 > Z_2 > Z_3 > Z_4 = 0$$

if \bar{X} is sufficiently large. In this case, optimal securities have the following structure:

- ▶ For $x \leq Z_3$, $F_3(x) = x$, so investor 3 gets the whole super-senior tranche;
- ▶ For $x \in [Z_2, Z_3]$, $F_2, F_3 > 0$ and $F_2 + F_3 = X$, so investors 2 and 3 share the full pie;
- ▶ For $x \in [Z_1, Z_2]$, investors 2 and 3 still share the pie, but the issuer retains a part of it: $F_1 = 0$, $F_2, F_3 > 0$ and $F_2 + F_3 < X$; and
- ▶ Finally, for $x > Z_1$, $F_1, F_2, F_3 > 0$ and $F_1 + F_2 + F_3 < X$.

Securities Slopes

Proposition The slope $\frac{d}{dx}F_i(X)$ is given by

- ▶ For an investor i with $\text{rank}(i) \geq J + 1$,

$$\begin{cases} 0, & X \leq Z_{\text{rank}(i)+1} \\ \frac{R_i(c_{1i})}{\sum_{j: \text{rank}(j) \geq k} R_j(c_{1j})}, & X \in (Z_{k+1}, Z_k), J + 1 \leq k \leq \text{rank}(i) \\ \frac{R_i(c_{1i})}{R_S(c_{1S}) + \sum_{j: \text{rank}(j) \geq k+1} R_j(c_{1j})}, & X \in (Z_{k+1}, Z_k), 0 \leq k \leq J \end{cases}$$

- ▶ For an investor i with $\text{rank}(i) \leq J$,

$$\begin{cases} 0, & X \leq Z_{\text{rank}(i)} \\ \frac{R_i(c_{1i})}{R_S(c_{1S}) + \sum_{j: \text{rank}(j) \geq k+1} R_j(c_{1j})}, & X \in (Z_{k+1}, Z_k), 0 \leq k \leq \text{rank}(i) - 1 \end{cases}$$

CARA Investors: Tranching Is Optimal

- ▶ A_i = risk aversion of investor i , A_S = issuer's risk aversion
- ▶ $I_{\text{rank}(i) \leq J}$ = indicator of investors with $\text{rank}(i) \leq J$

Proposition For each i , the investor i gets a *portfolio of tranches*

$$F_i = \sum_{k=0}^{\text{rank}(i)-I_{\text{rank}(i) \leq J}} \kappa_{ik} \text{Tranche}_k,$$

with

$$\kappa_{ik} = \frac{A_i^{-1}}{A_S^{-1} I_{k \leq J} + \sum_{j:\text{rank}(j) \geq k+I_{k \leq J}}^N A_j^{-1}}$$

Finding the Thresholds

Theorem Optimal Tranche Thresholds can be calculated as a unique fixed point of an explicitly constructed contraction mapping.

An explicit iterative procedure for finding the thresholds.

Some Indicators

- ▶ $Z_{\text{full selling}} \stackrel{\text{def}}{=} \max\{X : F(X) = X\}$
- ▶ $\#\{\text{senior}\} \stackrel{\text{def}}{=} \#\{i : Y_i > Y_S\}$

is the number of investors participating in the tranches that are fully sold

- ▶ if $Z_{\text{full selling}} = 0$, we define:

$$Z_{\text{no trade}} = \max\{x : F(x) = 0\}$$

to be the threshold Z_N of the super-senior tranche that is not sold at all

- ▶ for each investor i we define:

$$\text{index}(i) = \begin{cases} 1, & \text{if } \text{rank}(i) > J \\ 0, & \text{if } \text{rank}(i) \leq J \end{cases}.$$

More Selling

We say that a change in the parameters of the model leads to more selling if it leads to an increase (in the weak sense) in:

- ▶ $\#\{\text{senior}\}$,
- ▶ $Z_{\text{full selling}}$,
- ▶ $\text{index}(i)$ for each i ,

and to a decrease (in the weak sense) in $Z_{\text{no trade}}$.

Comparative Statics

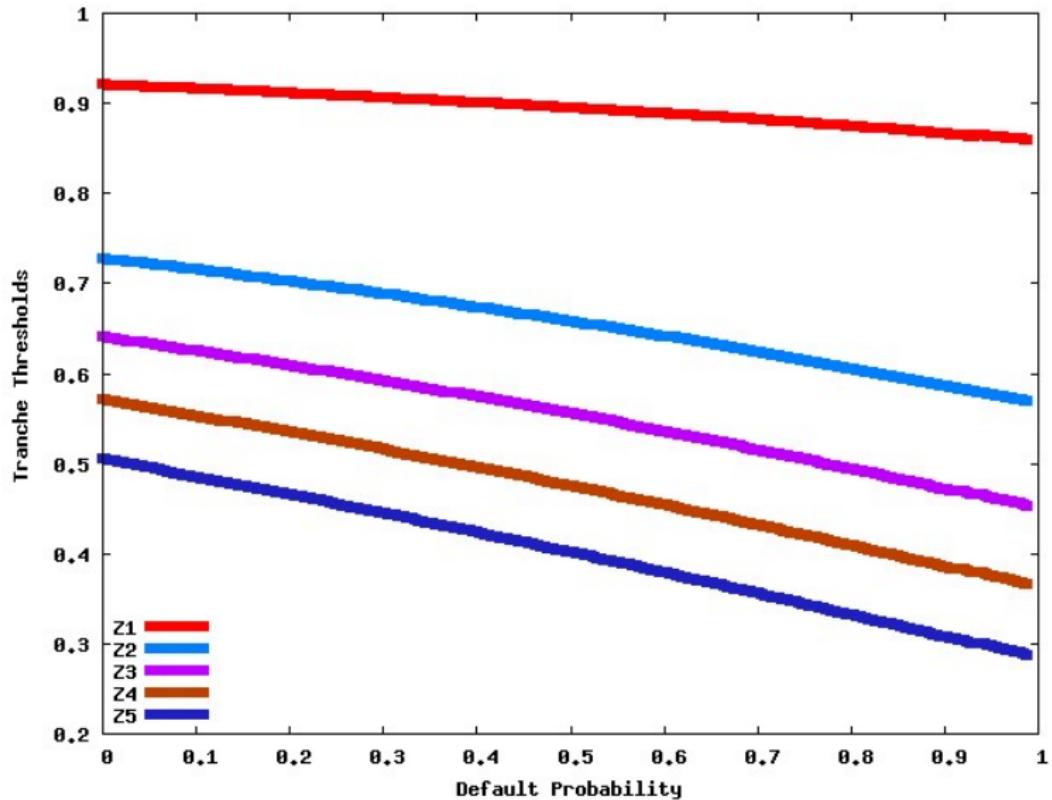
- ▶ worse X quality \Rightarrow More Selling
- ▶ higher discount rate ρ_S \Rightarrow More Selling
- ▶ a decrease in w_0 \Rightarrow More Selling
- ▶ an increase in the cost α \Rightarrow More(Less) Selling if issuer's relative risk aversion is above(below) 1

Predictions

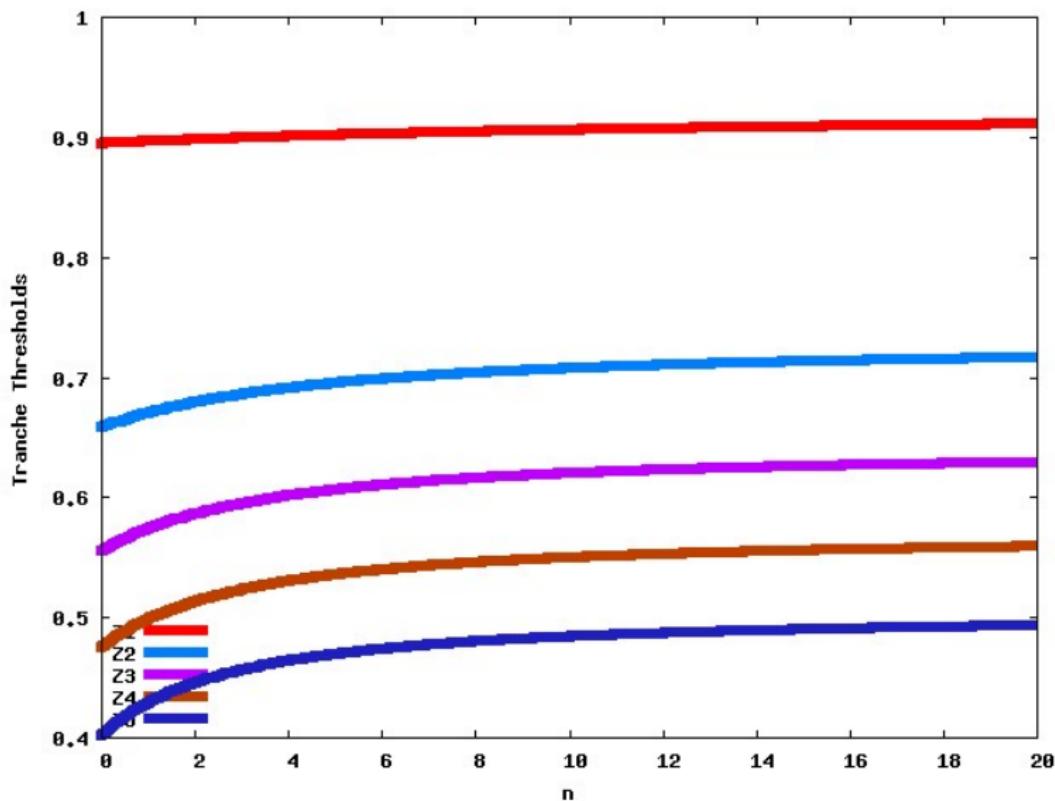
Proposition The following empirically observed properties hold true:

- (1) Synthetic transactions are preferred to true-sale transactions for asset pools with high quality;
- (2) In a synthetic transaction the size of the non-securitized super-senior tranche (TLP) increases with the quality of the asset pool; and
- (3) Synthetic (true-sale) transactions are preferably used by banks with a strong (weak) rating.

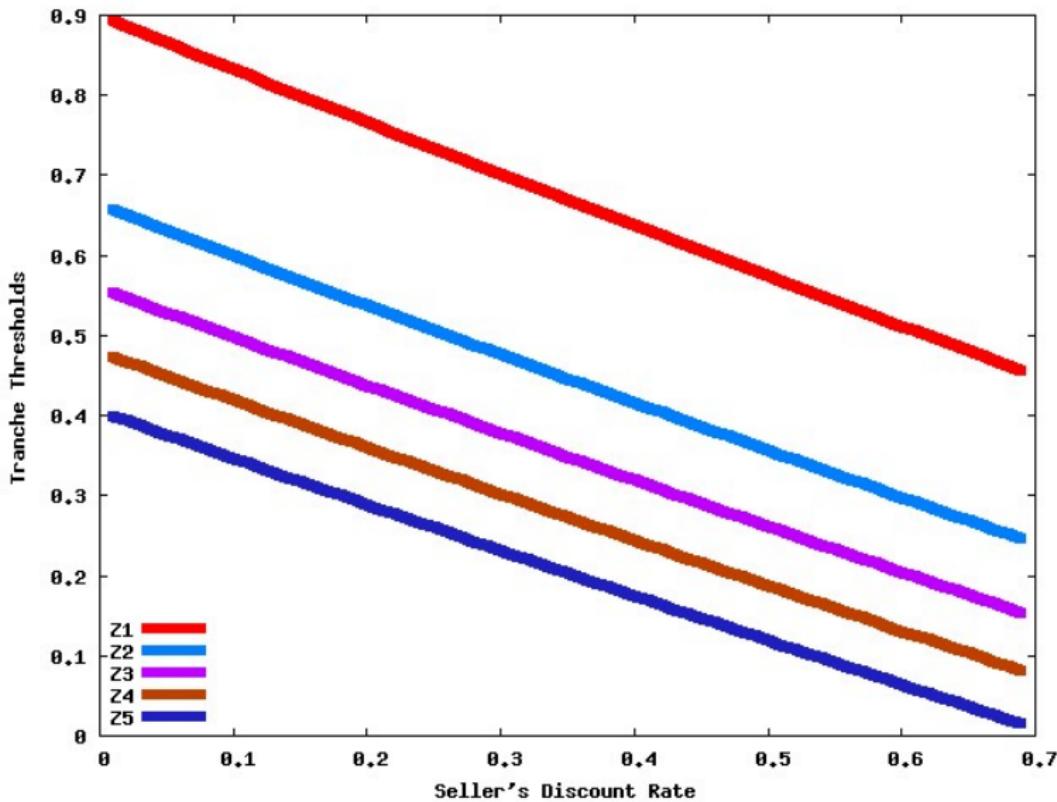
Change Distribution Through Default Probability



Change Distribution Through Skewness



The Effect of Issuer's Discount Rate

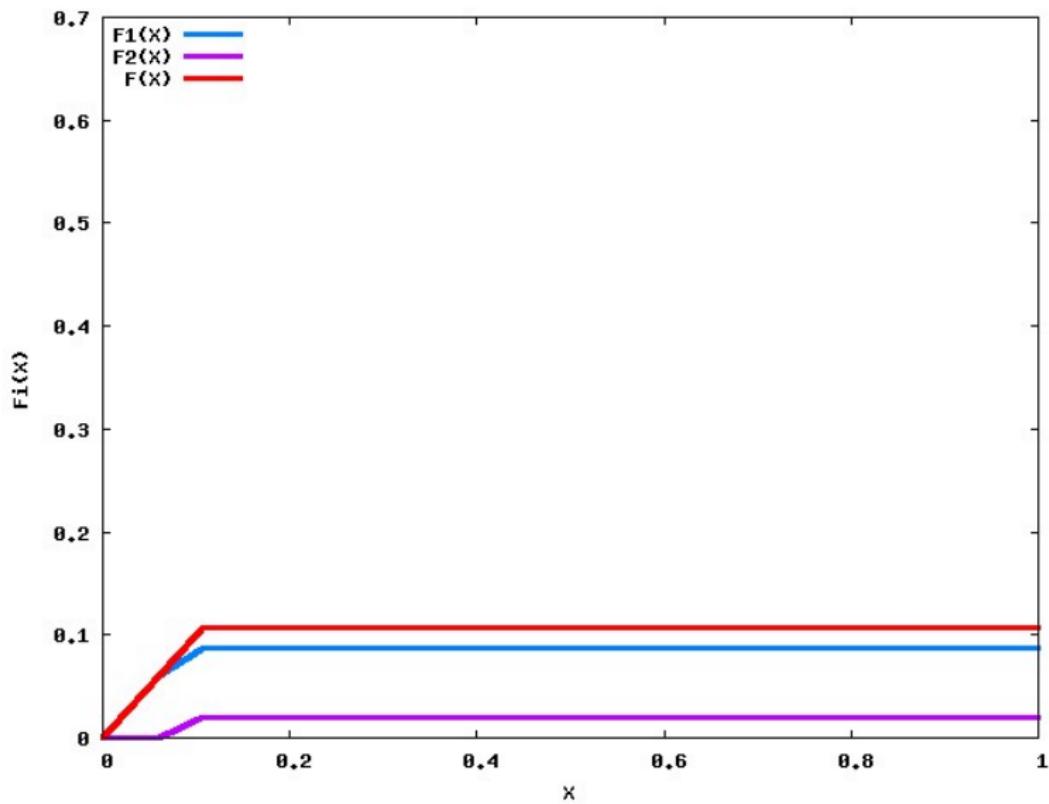


Risk Neutral Issuer

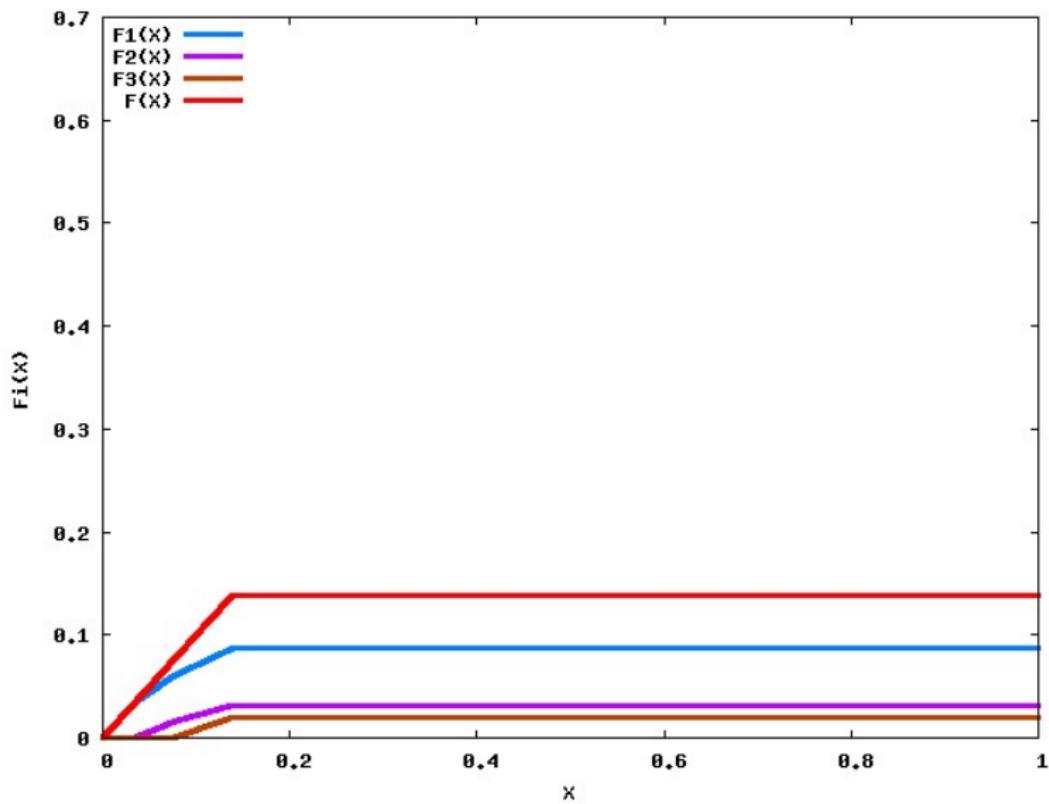
In this case

$$F(X) = \text{Tranche}(0, Z_{J+1})$$

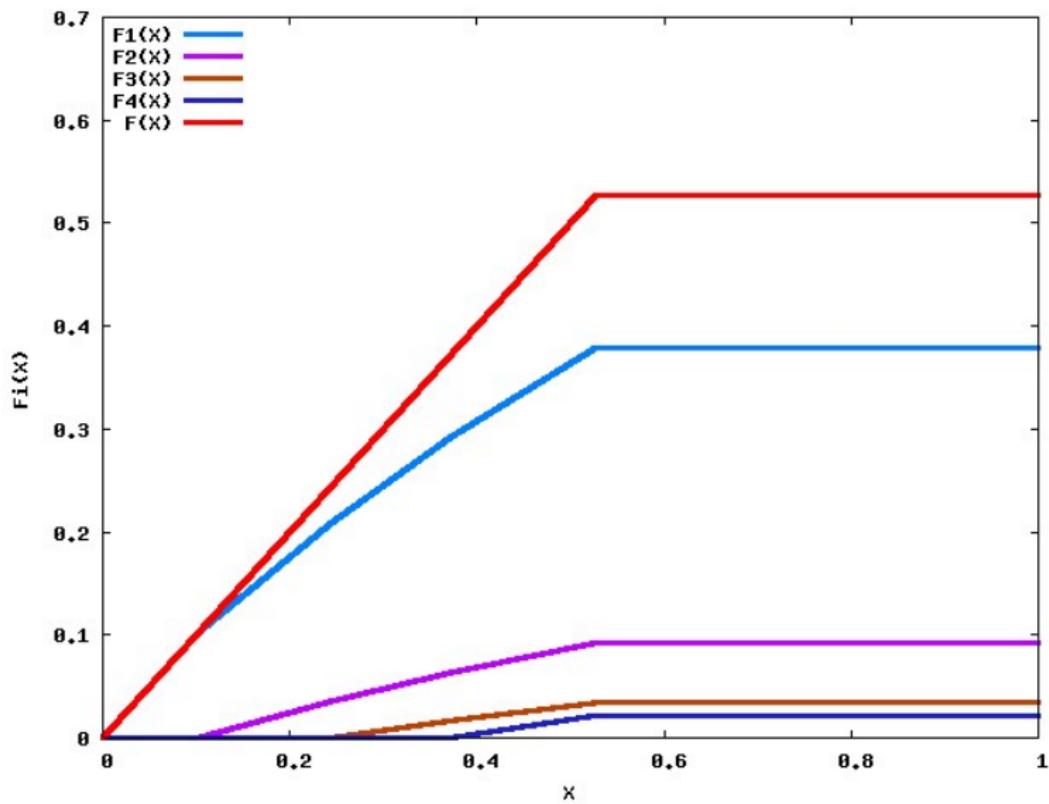
2 investors



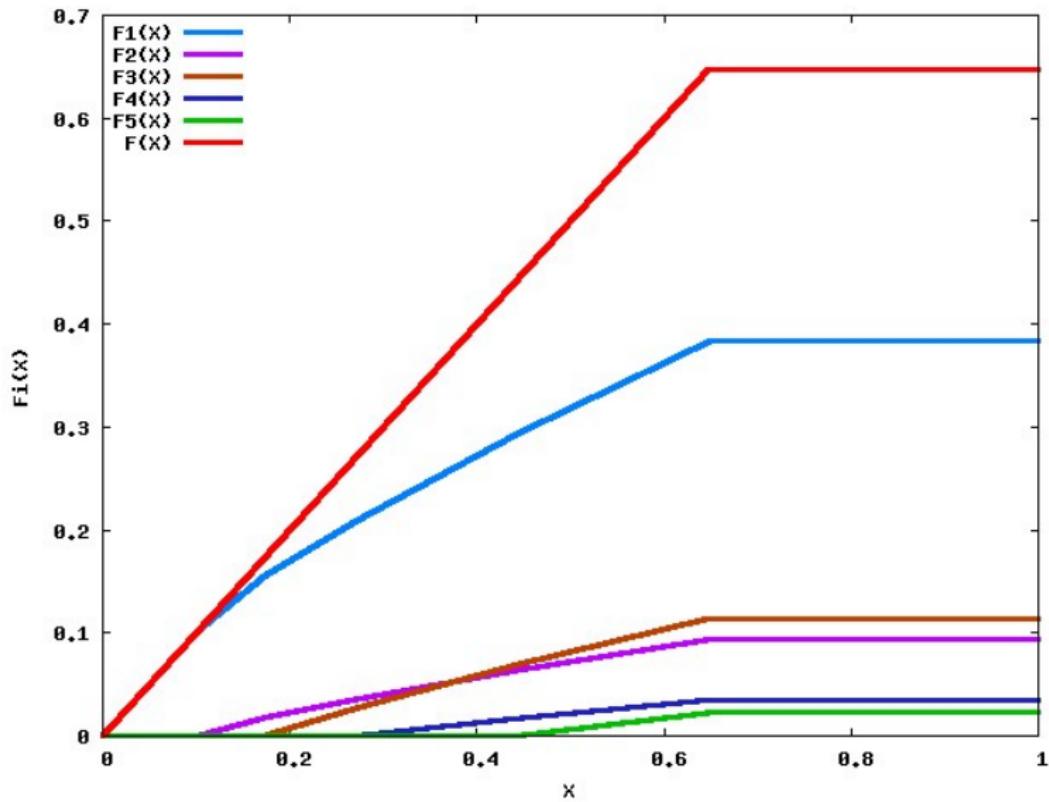
3 investors



4 investors



5 investors



Fixed Cost C of Issuing Securities I

Table: Agent Profiles with Risk-Averse Issuer

Agent	ρ	A	w_0	w_1
Issuer	0.08	1	0	0
Investor 1	0.01	0.3	0	0
Investor 2	0.04	0.4	0	0
Investor 3	0.06	0.6	0	0
Investor 4	0.08	0.1	0	0
Investor 5	0.1	0.1	0	0

Fixed Cost C of Issuing Securities II

Table: Optimal Selection of Investors with Fixed and Proportional Cost

C in %	0.01	0.1	0.5	2	13
Investors	1,2,3,4	1,2,4	1,4	4	-
Issuer's Expected Utility	0.599129	0.596688	0.589469	0.57357	0.49

Thank You!