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Optimal Security Design

I Risk Sharing
• Allen and Gale (1989), Whinton (1995)

I Liquidy and Asymmetric Information
• Gorton and Pennachi (1990), Boot and Takor (1993), DeMarzo and

Duffie (1999), Fulghieri and Lukin (2001), DeMarzo (2005), Axelson
(2007)

I Moral Hazard
• Hartman-Glaser, Piskorski, and Tchistyi (2009), Tchistyi (2009), and

Piskorski and Tchistyi (2009)
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The Model

I time periods t = 0 , 1
I issuer S has

• cash flows X at time 1 with esssupX = X̄
• income stream (w0 , w1)
• utility

uS(c0S) + e−ρS E[uS(c1S)]

I N heterogeneous investors
I investor i has

• endowment (w0i, w1i)
• utility

ui(c0i) + e−ρi E[ui(c1i)]
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The Problem of Security Design. I

I the issuer creates a basket Fi , i = 1, · · · , N of limited-liability
securities backed by the asset X

I no asymmetric information

I limited liability for investors: Fi ≥ 0
I limited liability for the issuer

F =
N∑
i=1

Fi ≤ X.

I the issuer retains the residual cash flow X − F.
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The Problem of Security Design. II

I the issuer is a monopolist

I he offers a security Fi to investor i, and the investor offers him the
price Pi = Pi(Fi)

I variable cost of issuance: Ci = αPi for some α ∈ (0, 1)
I investor i takes any contract satisfying satisfying the participation

constraint
ui(c0i) + e−ρi E[ui(c1i)] ≥ Li,

I

c0i = w0 − Pi , c1i = w1i + Fi(X)

is the investor’s consumption after entering the contract

I

Li = ui(w0i) + e−ρi ui(w1i)

is the investor’s reservation utility
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The Problem of Security Design. III
I monopolistic price

Pi(Fi) = w0i − vi(Li − e−ρi E[ui(w1i + Fi(X))]) ,

where vi is the inverse of the investor’s utility,

vi(ui(x)) = x.

I given the contracts (Pi , Fi) , i = 1 , · · · , N, the issuer’s
consumption is given by:

c0S = w0 + (1 − α)
N∑
i=1

Pi, c1S = w1 + X − F (X)

I the issuer’s securitization problem is to design the basket (Fi) so as
to maximize his utility,

uS(c0S) + e−ρS E
[
uS(c1S)

]
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Solution to the Single Investor Problem. I

I g(a, x) is the unique solution to:

a u′B(w1B + g) − u′S(w1 + x − g) = 0

Theorem

(1) If
ρS − ρB > Kmax,

then full selling is optimal,

F (X) = X ;

(2) if
Kmax > ρS − ρB > Kmid,

then

Fa(X) =

{
X , X ≤ Z(a)
g(a,X) , X > Z(a)

;
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Solution to the Single Investor Problem. II

(3) if
Kmid > ρS − ρB > Kmin,

then

Fa(X) =

{
0 , X ≤ Z(a)
g(a,X) , X > Z(a)

; and

(4) if
Kmin > ρS − ρB,

then there is no trade, that is, F (X) = 0.
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Finding the threshold

Z(a) =

{
IB(a−1u′S(w1)) − w1B in case (2)

IS(a u′B(w1B)) − w1 in case (3)
,

and a is the unique solution to

a =
(1− α) eρS u′S (w0 + (1− α)PB(Fa(X)) )

eρB u′B
(
w0B − PB(Fa(X))

) ,

where PB is given by (6).
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Marginal Rate of Intertemporal substitution

I

πB u
′
B(c0B) = e−ρB u′B(c1B) ⇔ πB =

e−ρB u′B(c1B)
u′B(c0B)

.

I marginal trade happens if

πB ≥ πS .
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Security Slope

I slope
d

dx
Fa(X) =

RB(c1B)
RB(c1B) + RS(c1S)

,

I absolute risk tolerance

RK(x) = −
u′K(x)
u′′K(x)

, K = B , S.

I if the seller is risk-neutral then F is a standard debt:

F (X) = min(X , d)

for some d ≥ 0
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Heterogeneous Investors

Proposition

I If all investors are risk neutral, then only the investor with the lowest
discount rate will participate in a trade.

I If investors are risk averse and X̄ is sufficiently large, then all
investors will get a non-zero part of X.
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Maximal Marginal Rates of Intertemporal
Substitution (MMRIS)

I investors’ MMRIS

Yi =
e−ρi u′i(w1i)
u′i(c0i)

I issuer’s MMRIS

YS =
e−ρS u′S(w1)

(1− α)u′S(c0S)
.

I Lagrange multipliers

ai
def
=

eρS (1− α)u′S(c0S)
eρi u′i(c0i)

=
Yi e

ρS (1− α)u′S(c0S)
u′i(w1i)
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Investors Ranking

For an investor i, we denote by rank(i) the number that the investor will
have when all investors are reordered so that Yi are increasing in i.

J the number of investors for which Yi is smaller than YS .
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Solution to the Optimal Securitization Problem I.
There exist thresholds

0 = ZN+1 ≤ ZN ≤ · · · ≤ Z1 ≤ Z0 = X̄

such that

(1) If Yi < YS , then the investor i only participates in tranches
Tranchej = [Zj+1, Zj ] with indices j ≤ rank(i) − 1 ;

(3) If Yi ≥ YS , then the investor i only participates in tranches Tranchej
with indices j ≤ rank(i) ;

(4) The issuer fully sells the part of X below ZJ+1 and retains a part of
X for X > ZJ+1. That is,

F (X) =
∑
i

Fi(X) = X

if X ≤ ZJ+1 and F (x) < x otherwise
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Inside Tranchej :

I if j ≤ J then investors i with rank(i) ≥ j + 1 and the issuer S share
Tranchej in a Pareto-efficient way

I if j > J then investors i with rank(i) ≥ j share the (fully sold)
Tranchej in a Pareto-efficient way

I thus, optimal securities have a subordinated structure
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Monotonicity

Proposition Optimal securities Fi and the retained part X − F (X) are
continuous and (weakly) monotone increasing in X;
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Example.
Suppose that there are three investors with

Y1 < YS < Y2 < Y3 .

Then, J = 1 and

X̄ = Z0 > Z1 > Z2 > Z3 > Z4 = 0

if X̄ is sufficiently large. In this case, optimal securities have the following
structure:

I For x ≤ Z3, F3(x) = x, so investor 3 gets the whole super-senior
tranche;

I For x ∈ [Z2, Z3], F2, F3 > 0 and F2 + F3 = X, so investors 2 and 3
share the full pie;

I For x ∈ [Z1, Z2], investors 2 and 3 still share the pie, but the issuer
retains a part of it: F1 = 0, F2, F3 > 0 and F2 + F3 < X; and

I Finally, for x > Z1, F1, F2, F3 > 0 and F1 + F2 + F3 < X.
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Securities Slopes

Proposition The slope d
dxFi(X) is given by

I For an investor i with rank(i) ≥ J + 1,
0, X ≤ Zrank(i)+1

Ri(c1i)P
j : rank(j)≥ k Rj(c1j)

, X ∈ (Zk+1, Zk), J + 1 ≤ k ≤ rank(i)
Ri(c1i)

RS(c1S)+
P

j : rank(j)≥ k+1 Rj(c1j)
, X ∈ (Zk+1, Zk), 0 ≤ k ≤ J

;

I For an investor i with rank(i) ≤ J,{
0, X ≤ Zrank(i)

Ri(c1i)
RS(c1S)+

P
j : rank(j)≥ k+1 Rj(c1j)

, X ∈ (Zk+1, Zk), 0 ≤ k ≤ rank(i)− 1
.
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CARA Investors: Tranching Is Optimal

I Ai = risk aversion of investor i , AS = issuer’s risk aversion

I Irank(i)≤J = indicator of investors with rank(i) ≤ J

Proposition For each i, the investor i gets a portfolio of tranches

Fi =
rank(i)−Irank(i)≤J∑

k=0

κik Tranchek,

with

κik =
A−1
i

A−1
S Ik≤J +

∑N
j:rank(j)≥k+Ik≤J

A−1
j
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Finding the Thresholds

Theorem Optimal Tranche Thresholds can be calculated as a unique fixed
point of an explicitly constructed contraction mapping.

An explicit iterative procedure for finding the thresholds.
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Some Indicators
I

Zfull selling
def
= max{X : F (X) = X}

I

#{senior} def= #{i : Yi > YS}
is the number of investors participating in the tranches that are fully
sold

I if Zfull selling = 0, we define:

Zno trade = max{x : F (x) = 0}

to be the threshold ZN of the super-senior tranche that is not sold at
all

I for each investor i we define:

index(i) =

{
1 , if rank(i) > J

0 , if rank(i) ≤ J
.
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More Selling

We say that a change in the parameters of the model leads to more selling
if it leads to an increase (in the weak sense) in:

I #{senior},
I Zfull selling,

I index(i) for each i,

and to a decrease (in the weak sense) in Zno trade.
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Comparative Statics

I worse X quality ⇒ More Selling

I higher discount rate ρS ⇒ More Selling

I a decrease in w0 ⇒ More Selling

I an increase in the cost α ⇒ More(Less) Selling if issuer’s relative risk
aversion is above(below) 1
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Predictions

Proposition The following empirically observed properties hold true:

(1) Synthetic transactions are preferred to true-sale transactions for asset
pools with high quality;

(2) In a synthetic transaction the size of the non-securitized super-senior
tranche (TLP) increases with the quality of the asset pool; and

(3) Synthetic (true-sale) transactions are preferably used by banks with a
strong (weak) rating.
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Change Distribution Through Default Probability

Malamud, Rui and
Whinston Optimal Securitization 26



Change Distribution Through Skewness
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The Effect of Issuer’s Discount Rate
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Risk Neutral Issuer

In this case
F (X) = Tranche(0, ZJ+1)
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2 investors
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3 investors
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4 investors
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5 investors
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Fixed Cost C of Issuing Securities I

Table: Agent Profiles with Risk-Averse Issuer

Agent ρ A w0 w1

Issuer 0.08 1 0 0
Investor 1 0.01 0.3 0 0
Investor 2 0.04 0.4 0 0
Investor 3 0.06 0.6 0 0
Investor 4 0.08 0.1 0 0
Investor 5 0.1 0.1 0 0
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Fixed Cost C of Issuing Securities II

Table: Optimal Selection of Investors with Fixed and Proportional Cost

C in % 0.01 0.1 0.5 2 13

Investors 1,2,3,4 1,2,4 1,4 4 –

Issuer’s Expected Utility 0.599129 0.596688 0.589469 0.57357 0.49502
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Thank You!
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