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-
Optimal Security Design

» Risk Sharing
e Allen and Gale (1989), Whinton (1995)

» Liquidy and Asymmetric Information
e Gorton and Pennachi (1990), Boot and Takor (1993), DeMarzo and
Duffie (1999), Fulghieri and Lukin (2001), DeMarzo (2005), Axelson
(2007)

» Moral Hazard

e Hartman-Glaser, Piskorski, and Tchistyi (2009), Tchistyi (2009), and
Piskorski and Tchistyi (2009)
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]
The Model

> time periodst =0, 1
> issuer S has

e cash flows X at time 1 with esssupX = X
e income stream (wy , wy)
o utility
us(cos) + €7 7% Elus(cis)]

» N heterogeneous investors

> investor ¢ has

e endowment (wo;, w1;)
o utility
ui(coi) + € " Elui(cyi)]
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-
The Problem of Security Design. |

> the issuer creates a basket F;, i =1,---, N of limited-liability
securities backed by the asset X

> no asymmetric information
> limited liability for investors: F; > 0

> limited liability for the issuer
N
F =) F<X
i=1

» the issuer retains the residual cash flow X — F.
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-
The Problem of Security Design. 1l

> the issuer is a monopolist

> he offers a security F; to investor 7, and the investor offers him the
price P, = Pi(F)

» variable cost of issuance: C; = a P; for some a € (0,1)

> investor i takes any contract satisfying satisfying the participation
constraint

ui(coi) + e P Elui(er;)] > Ly,

coi = wo — P, c;; = wi + Fi(X)

is the investor's consumption after entering the contract

Li = ui(wo;) + e P u;(wiy)
is the investor's reservation utility
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|
The Problem of Security Design. IlI
» monopolistic price
Pi(F;) = wo; — vi(L; — e 7 Elui(wi; + Fi(X))]),

where v; is the inverse of the investor's utility,

vi(ui(z)) = =
» given the contracts (P, F;),i = 1,---, N, the issuer’s
consumption is given by:
N
cogzwo—i—(l—a)ZPi cs = w; + X — F(X)
i=1

> the issuer's securitization problem is to design the basket (F;) so as
to maximize his utility,
us(cos) + € P Elus(cis) ]
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R ——
Solution to the Single Investor Problem. |
» g(a,x) is the unique solution to:
aug(ung + g) — ug(wy +z — g) = 0

Theorem
(1) If
ps — pPB > Kax,

then full selling is optimal,

F(X) = X;
(2) if
Kax > pPs — PB > Kia,
then
X X < Z
Fa(X) — ) —_ ((l) 7
g(a, X)) , X > Z(a)
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Solution to the Single Investor Problem.

(3) if
Kmid > ps —pB > Kminy
then
X < Z
F(X) = 0 T (a); and
g(a,X) , X > Z(a)
(4) if

Knin > PS — PB,
then there is no trade, that is, F/(X) = 0.

Malamud, Rui.and
Whinston Optimal Securitization



-
Finding the threshold

Z(a) = {IB(G_lug(wl)) — wip  in case (2)
Is(aup(wip)) — wi in case (3)

and a is the unique solution to

y - (1—-a)ersSug(wy + (1 —a) PB(FQ(X)))
ePB uB(wgB — PB( ) ’

where Pg is given by (6).
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I
Marginal Rate of Intertemporal substitution

e PBuls(c1B)

/ — = PB,/ _
TR UlcoB) = € uplCciB) <& m™B =
B( 0 ) B( ) u,B(COB)

» marginal trade happens if

™ > TS.



-
Security Slope

> slope
d Rp(ciB)
— F,(X) = ,
dx ( ) RB(ClB) + RS(Cls)
» absolute risk tolerance
Uy ()
Rg(z) = X2 K =B,S
uy ()

» if the seller is risk-neutral then F' is a standard debt:
F(X) = min(X, d)

for some d > 0
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Heterogeneous Investors

Proposition
» If all investors are risk neutral, then only the investor with the lowest
discount rate will participate in a trade.
> If investors are risk averse and X is sufficiently large, then all
investors will get a non-zero part of X.
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Maximal Marginal Rates of Intertemporal
Substitution (MMRIS)

> investors’ MMRIS -
e P ug(wiy)

Y, =

u;(coi)
» issuer's MMRIS
Yo = e Ps ug(wy) ‘
(1 — a)ug(cos)
» Lagrange multipliers
Pl U CIV) us(cos) _ Yiers (1 — a)ulg(cos)
eri ug(coi) wi(wi;)
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Investors Ranking

For an investor i, we denote by rank(z) the number that the investor will
have when all investors are reordered so that Y; are increasing in 1.

J the number of investors for which Y is smaller than Yg.
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Solution to the Optimal Securitization Problem I.
There exist thresholds

0= Zny1<Zy < -+ < Z1<Zy =X

such that

(1) IfY; < Yg, then the investor i only participates in tranches
Tranche; = [Z;41, Z;] with indices j < rank(i) — 1;

(3) If Y; > Yg, then the investor i only participates in tranches Tranche;
with indices j < rank(i);

(4) The issuer fully sells the part of X below Z;;1 and retains a part of
X for X > Zj11. That is,

F(X) =Y FX) =X

if X <Zj;41 and F(z) < x otherwise
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Inside Tranche; :

» if 7 < J then investors i with rank(i) > j + 1 and the issuer S share
Tranche; in a Pareto-efficient way

» if j > J then investors ¢ with rank(i) > j share the (fully sold)
Tranche; in a Pareto-efficient way

» thus, optimal securities have a subordinated structure
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DESSS———....
Monotonicity

Proposition Optimal securities F; and the retained part X — F(X) are
continuous and (weakly) monotone increasing in X;



Example.
Suppose that there are three investors with

Y1 <Ys <Yy <Yj.
Then, J =1 and
X:Z0>Zl>ZQ>Z3>Z4:O

if X is sufficiently large. In this case, optimal securities have the following
structure:

» For x < Zs3, F3(x) = x, so investor 3 gets the whole super-senior
tranche;

» For x € [Z2,Z3], F5,F3 >0 and Fy + F3 = X, so investors 2 and 3
share the full pie;

» For x € [Z1, Zs], investors 2 and 3 still share the pie, but the issuer
retains a part of it: /4 =0, F5, F3 >0 and Fy + F3 < X; and

» Finally, for x > Zy, Iy, F5, F5 > 0 and F; + F> + F3 < X.
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Securities Slopes

Proposition The slope d%E(X) is given by

» For an investor ¢ with rank(z) > J + 1,

0, X < Zrank(i)Jrl
Ri(c1i) R
S = r B X € (Zky1,Zy),J + 1 < k < rank(i
Ri(c1a) X € (Zps1, Z1),0< k< J

Rs(e1s) + 225 vank(j) > k1 Filca)’

» For an investor ¢ with rank(i) < J,

Ri(c1i) N
RS(ClS)+Zj:rank(j)2k+1 Rj(c1;)’ X e (Zk—f—l, Zk)’o <k< rank(z) 1

{07 X < Zrank(i)
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CARA Investors: Tranching Is Optimal

issuer’s risk aversion

» A; = risk aversion of investor i , Ag
> Lank(iy<s = indicator of investors with rank(i) < .J

Proposition For each 4, the investor ¢ gets a portfolio of tranches

rank(i)_lrank(i)gJ

F, = Z kir Tranchey,
k=0
with .
Kik = A;
ik — T N 1
Ag  Ik<y + Zj:rank(j)zk—i—lkSJ A;
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-
Finding the Thresholds

Theorem Optimal Tranche Thresholds can be calculated as a unique fixed
point of an explicitly constructed contraction mapping.

An explicit iterative procedure for finding the thresholds.
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N —
Some Indicators

de
qull selling :f maX{X : F(X) = X}

#{senior} &f #{i:Y: > Ys}

is the number of investors participating in the tranches that are fully
sold
> if qun selling = 0, we define:

Zno trade = max{aj : F(l’) = 0}

to be the threshold Zy of the super-senior tranche that is not sold at
all
» for each investor 7 we define:
1 ) k(4
index(i) = {0 rank(@) >
0, af rank(i) <.J
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More Selling

We say that a change in the parameters of the model leads to more selling
if it leads to an increase (in the weak sense) in:

» #{senior},
> Zfull selling,
» index() for each i,

and to a decrease (in the weak sense) in Zy trade-
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Comparative Statics

» worse X quality = More Selling
» higher discount rate pg = More Selling
> a decrease in wy = More Selling

> an increase in the cost & = More(Less) Selling if issuer’s relative risk
aversion is above(below) 1
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Predictions

Proposition The following empirically observed properties hold true:
(1) Synthetic transactions are preferred to true-sale transactions for asset
pools with high quality;

(2) In a synthetic transaction the size of the non-securitized super-senior
tranche (TLP) increases with the quality of the asset pool; and

(3) Synthetic (true-sale) transactions are preferably used by banks with a
strong (weak) rating.
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R ——
Change Distribution Through Default Probability

Tranche Thresholds
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R ——
Change Distribution Through Skewness

1

Tranche Thresholds
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]
The Effect of Issuer’s Discount Rate

Tranche Thresholds

a a.1 a.2 0.3 6.4 a.5 a.6
Seller”s Discount Rate
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.
Risk Neutral Issuer

In this case
F(X) = Tranche(0,Z41)



.
2 investors

F1{x)
e
8.6 _
0.5 J
6.4 J
-~
x
&
1l
'S
8.3 J
8.2 - J
0.1 ya =
a - 1 1 1 1
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N —
3 investors

8.7 T T T T
F1{X} =
F2{X) mm—
F3(K) e
8.6 -
8.5
8.4 -
-
x
<
1l
'S
8.3
8.2 -
8.1 -
8 e — . \ . .
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Filx}
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4 investors

F1{x}
Fa{x}
F3{X}
FA{x}
r F{x)

Optimal Securitization
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5 investors

F1{x}
Fa{x}

Optimal Securitization
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-
Fixed Cost C' of Issuing Securities |

Table: Agent Profiles with Risk-Averse Issuer

Agent p A wy wp
Issuer 0.08 1 0 0
Investor1 0.01 03 0 0
Investor 2 0.04 04 O 0
Investor 3 0.06 0.6 O 0
Investor 4 0.08 0.1 O 0
Investor5 0.1 0.1 O 0
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-
Fixed Cost C' of Issuing Securities 1l

Table: Optimal Selection of Investors with Fixed and Proportional Cost

Cin% 0.01 0.1 0.5 2 13
Investors 1,2,3,4 1,2,4 1,4 4 -
Issuer’s Expected Utility 0.599129 0.596688 0.589469 0.57357  0.4¢
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Thank You!



