

Content Sharing in Social Broadcasting Environment: Evidence from Twitter

Huaxia Rui
(with Zhan Shi and Andrew Whinston)

Simon School of Business
University of Rochester

September 28, 2012

Outline

1 Motivation

2 Data

3 Model

4 Results

A Screenshot of Retweeting on Twitter

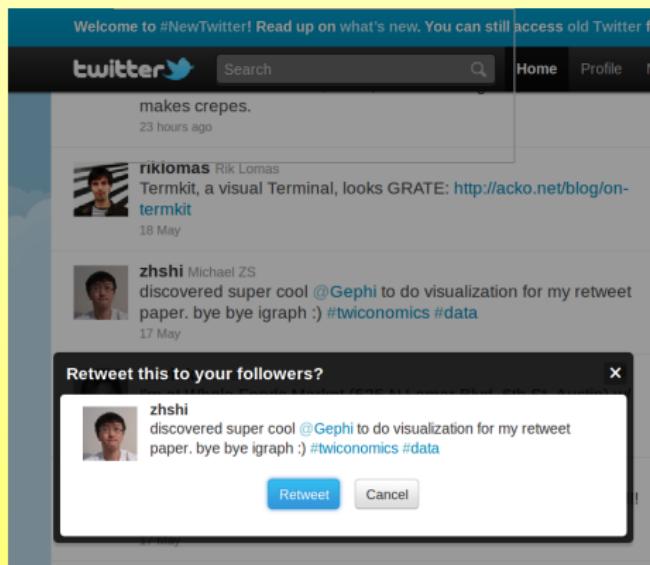
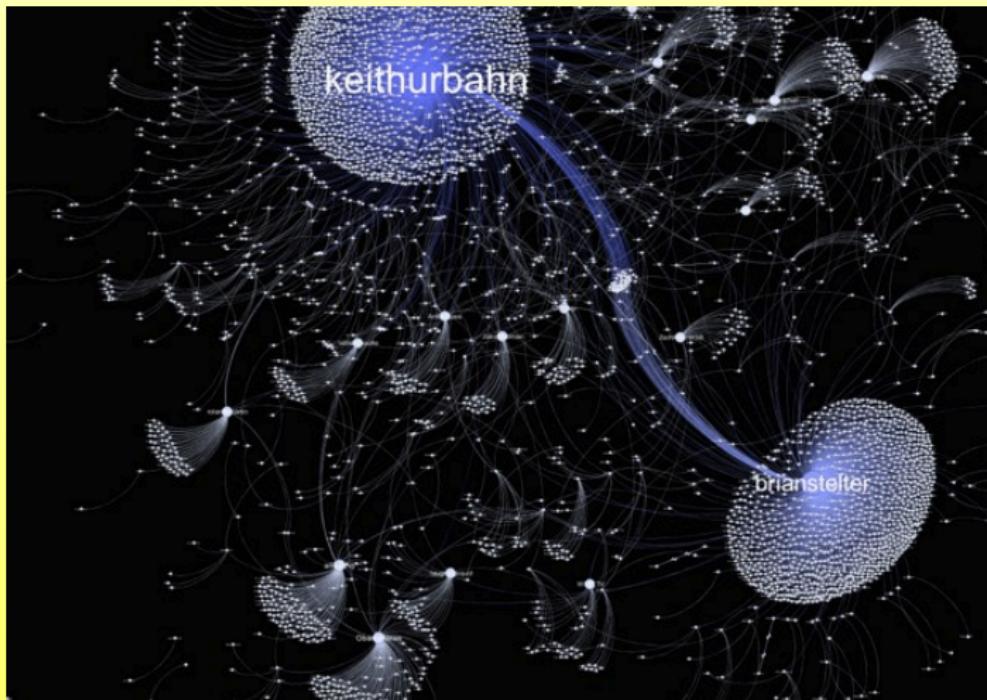


Figure 1: Retweeting is the action of a user rebroadcasting tweets received from the user's followings to the user's followers.

The Power of Retweeting

@keithurbahn

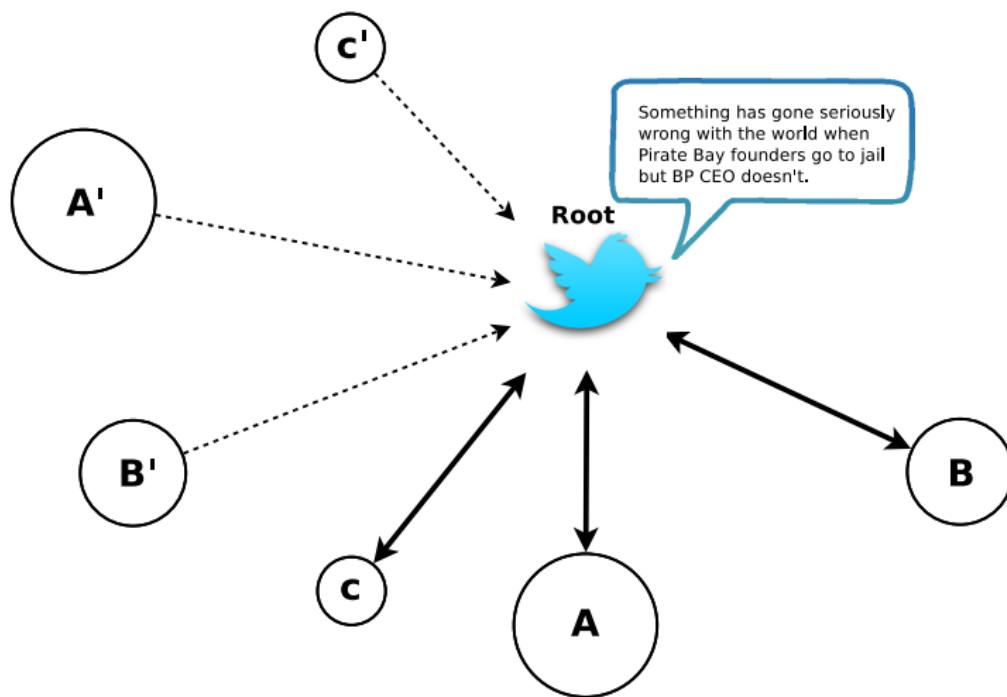
Keith Urbahn


So I'm told by a reputable person they
have killed Osama Bin Laden. Hot damn.

1 May via Twitter for BlackBerry® ⭐ Favorite ↗ Retweet ↗ Reply

Retweeted by [WOLVERINE_TWO](#) and others

The Power of Retweeting¹


¹<http://blog.socialflow.com/post/5246404319>

Replacement for the Follower Count?

- Twitter cofounder Evan Williams – who remains on the company's board – hinted on September 24, 2012, that follower counts may soon become the second most important number to users.
- According to Evan, “The thing I think would be more interesting than followers is... retweets,” clarifying that a simple measure of followers “doesn’t capture your distribution.”

Motivation

Who will retweet?

Motivation

Research Question

How does the strength of the interpersonal tie moderate people's voluntary content sharing behavior in a social broadcasting network?

Significance

- Retweeting is the main instrument through which information diffuses on Twitter. Hence, a user's ability to generate more retweeting is considered an important aspect of influence. Therefore, the study of this research question could shed light on the measurement of influence.
- Studying people's retweeting behavior not only helps us understand how people relay information but also shed light on why people relay information.

Outline

1 Motivation

2 Data

3 Model

4 Results

How Did We Collect Data?

- We fetch tweets from July 22nd to Dec 2nd 2010.
- Once a tweet enters our tweets database, the “fetch-retweeters” program began to track and fetch its retweeting data, and would be doing constantly during the subsequent 5 days.
- As retweeting data came in, another “fetch-graph” program worked on collecting relevant network graph information.
- By the end of the 140 day period, we had successfully completed data collection for 65 tweets. In order of the time when a tweet was posted, we indexed them by an integer, t , ranging from 1 to 65.

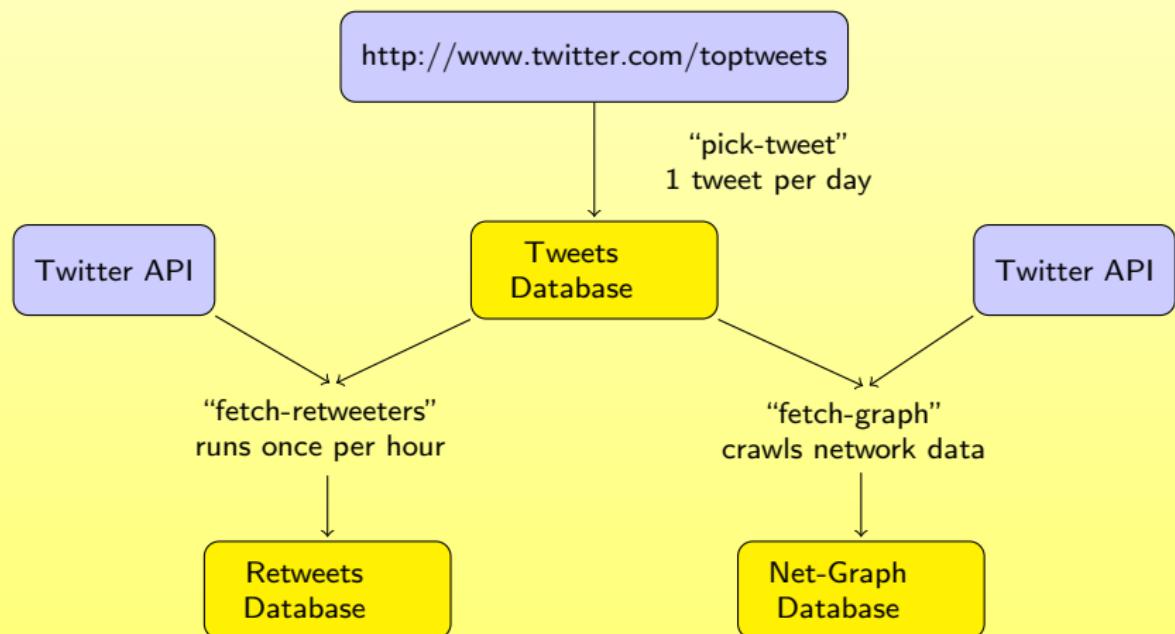


Figure 2: Data Collection Workflow

Outline

1 Motivation

2 Data

3 Model

4 Results

Key Variables

For a tweet t , we use $i \in \{1, 2, \dots, n_t\}$ to index its observations (i.e. author t 's followers). The definitions of the key variables are listed here

- y_{ti} : binary outcome, 1 if observation ti retweeted and 0 otherwise;
- w_{ti} : binary variable, 0 if author t and observation ti mutually follow each other, and 1 if only ti follows author t (weak tie);
- V_{ti} : outdegree, the number of ti 's followings;
- W_{ti} : indegree, the number of ti 's followers;
- m_{ti} , the number of times ti 's followings retweeted tweet t .

Model

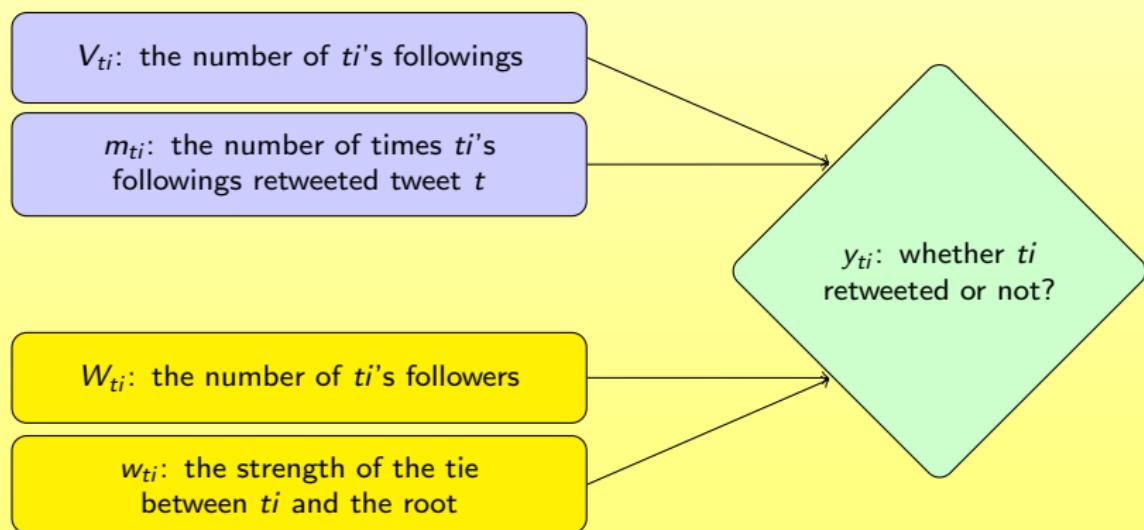


Figure 3: Conceptual Model

A Two-Stage Model

Given a tweet t by the root, and root's follower ti

$$\begin{aligned}\text{Prob}(i \text{ retweets } t) &= \text{Prob}(i \text{ reads tweet } t) \\ &\quad \times \text{Prob}(i \text{ retweets } t \mid i \text{ reads the tweet } t)\end{aligned}$$

Notation

$$P_1 = \text{Prob}(i \text{ reads tweet } t)$$

$$P_2 = \text{Prob}(i \text{ retweets } t \mid i \text{ reads the tweet } t)$$

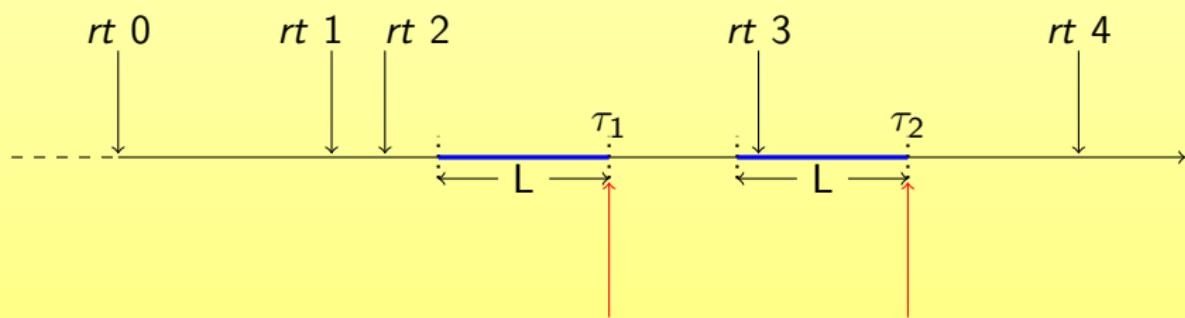

What Affect P_1

Figure 4: (Re)Tweets Entering A Twitter User's Timeline

Stage 1

Assumptions

$$P_1 = \text{Prob} \left(\frac{m_{ti}}{V_{ti}} > \epsilon_{ti} \right), \text{ where } \log(\epsilon_{ti}) | t \sim \log(\epsilon_{ti}) \sim N(\bar{\epsilon}, \sigma_\epsilon^2)$$

$$\log(m_{ti}) - \log(V_{ti}) > \log(\epsilon_{ti})$$

$$-\frac{\bar{\epsilon}}{\sigma_\epsilon} + \frac{1}{\sigma_\epsilon} \log(m_{ti}) - \frac{1}{\sigma_\epsilon} \log(V_{ti}) > \frac{\log(\epsilon_{ti}) - \bar{\epsilon}}{\sigma_\epsilon}$$

$$P_1 = \Phi \left(-\frac{\bar{\epsilon}}{\sigma_\epsilon} + \frac{1}{\sigma_\epsilon} \log(m_{ti}) - \frac{1}{\sigma_\epsilon} \log(V_{ti}) \right)$$

$$P_1 = \Phi \left(\alpha_0 + \alpha_1 \log(m_{ti}) + \alpha_2 \log(V_{ti}) \right)$$

Stage 2

Assumptions

$$P_2 = \text{Prob} \left(\hat{c}_t + \hat{\beta}_1 w_{ti} + \hat{\beta}_2 W_{ti} > \eta_{ti} \right),$$

where

$$\eta_{ti} \perp \epsilon_{ti}, \quad \eta_{ti} | t \sim \eta_{ti} \sim N(\bar{\eta}, \sigma_{\eta}^2)$$

$$-\frac{\bar{\eta}}{\sigma_{\eta}} + \frac{\hat{c}_t}{\sigma_{\eta}} + \frac{\hat{\beta}_1}{\sigma_{\eta}} w_{ti} + \frac{\hat{\beta}_2}{\sigma_{\eta}} W_{ti} > \frac{\eta_{ti} - \bar{\eta}}{\sigma_{\eta}}$$

$$P_2 = \Phi \left(-\frac{\bar{\eta}}{\sigma_{\eta}} + \frac{\hat{c}_t}{\sigma_{\eta}} + \frac{\hat{\beta}_1}{\sigma_{\eta}} w_{ti} + \frac{\hat{\beta}_2}{\sigma_{\eta}} W_{ti} \right)$$

$$P_2 = \Phi (c_t + \beta_1 w_{ti} + \beta_2 W_{ti})$$

Full Model

$$\begin{aligned} P(y_{ti} = 1) &= P_1 \times P_2 \\ &= \Phi(\alpha_0 + \alpha_1 \log(m_{ti}) + \alpha_2 \log(V_{ti})) \\ &\quad \times \Phi(c_t + \beta_1 w_{ti} + \beta_2 W_{ti}) \\ \theta &= \{\alpha_0, \alpha_1, \alpha_2, \beta_1, \beta_2, c_1, c_2, \dots, c_T\} \end{aligned}$$

Outline

1 Motivation

2 Data

3 Model

4 Results

Result of MLE with Probit Specification

dependent variable: y_{ti} , # of tweets: 65, # of obs: 24403

probit

	$\log(m_{ti})$	$\log(V_{ti})$	w_{ti}	$\log(W_{ti})$	$w_{ti} \log(W_{ti})$
	α_1	α_2	β_1	β_2	

eq 1: probability of consumption upon receipt

1) 0.494** -0.639**

(4.81) (-10.38)

2) 0.485** -0.641**

(4.69) (-10.33)

eq 2: probability of retweeting upon consumption

1) 0.284** 0.115**

(5.57) (6.32)

2) 0.364* 0.127** -0.014

(2.33) (4.15) (-0.56)

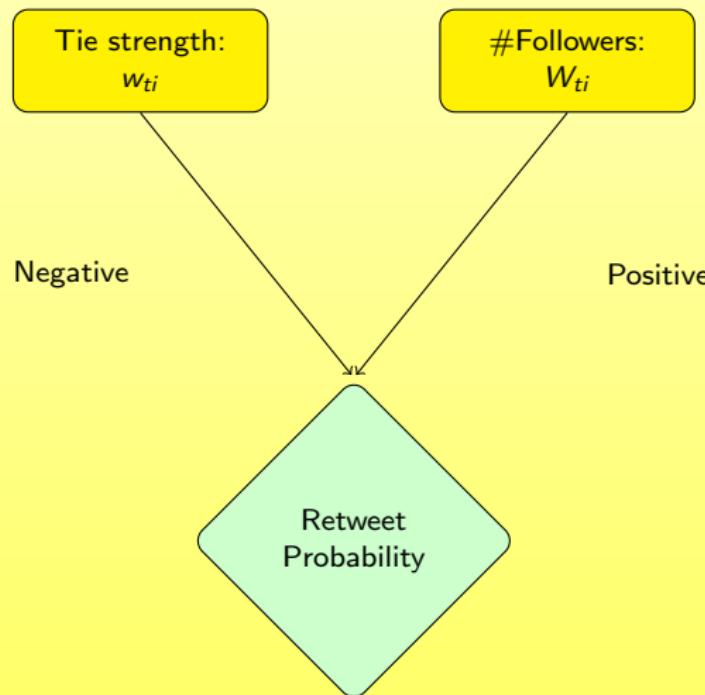
Result of MLE with Logit Specification

logit

	$\log(m_{ti})$	$\log(V_{ti})$	w_{ti}	$\log(W_{ti})$	$w_{ti} \log(W_{ti})$
	α_1	α_2	β_1	β_2	

eq 1: probability of consumption upon receipt

3)	0.812**	-1.131**
	(4.80)	(-10.19)

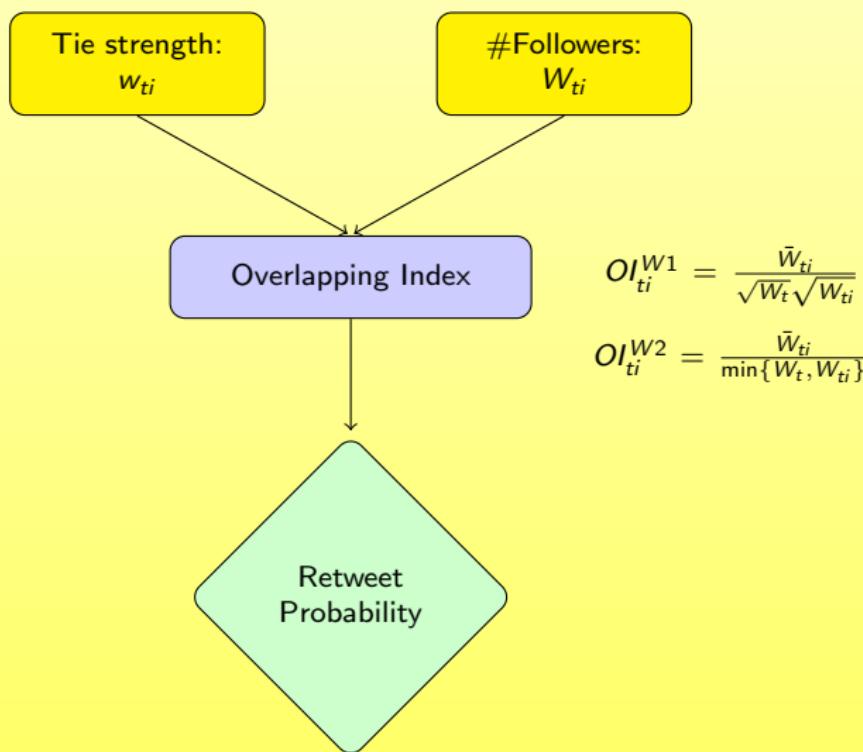

4)	0.800**	-1.135**
	(4.69)	(-10.13)

eq 2: probability of retweeting upon consumption

3)		0.556**	0.243**
		(5.60)	(7.06)
4)		0.697*	0.263**
		(2.25)	(4.54)
			-0.025
			(-0.49)

Discussion

Discussion


Alex Moderator 05/08/2010 07:47 PM

One thing I would point out is that I don't re-tweet or mention certain people because I assume my friends are either already following them or simply not interested.^a

^a<http://blogs.hbr.org/research/2010/05/influence-and-twitter.html>

Discussion

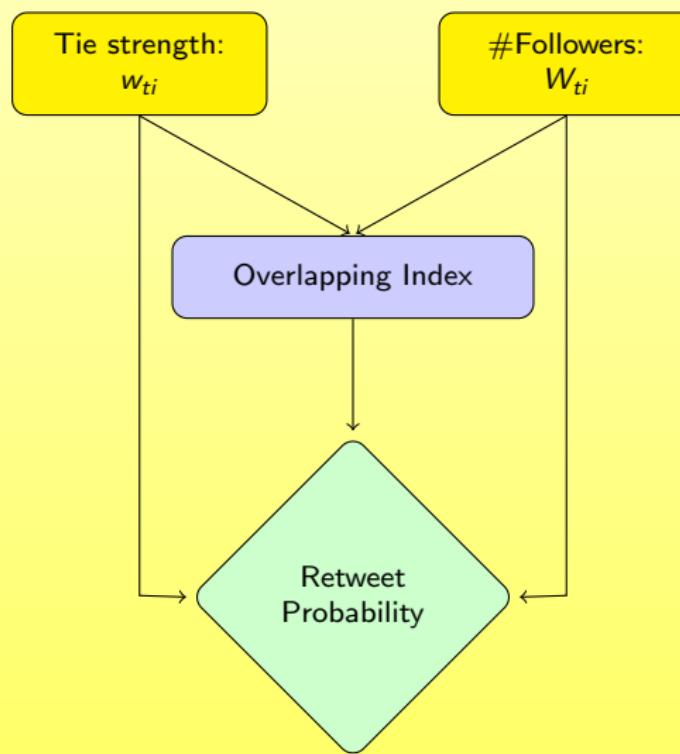
Result of MLE with Probit Specification and OI included

dependent variable: y_{ti} , # of tweets: 65, # of obs: 24403

probit

	$\log(m_{ti})$	$\log(V_{ti})$	w_{ti}	$\log(W_{ti})$	OI_{ti}
	α_1	α_2	β_1	β_2	β_3

eq 1: probability of consumption upon receipt


1)	0.445**	-0.586**
	(6.04)	(-7.72)

eq 2: probability of retweeting upon consumption

1)	0.179**	0.134**	-2.947**
	(4.15)	(6.87)	-4.29

Discussion

Conclusion

- Through delicately designed data collection and analyzing procedure and carefully constructed econometric model, we studied how social network characteristics are associated with information diffusion on Twitter.
- We found retweeting is more likely to occur from weak ties .

Managerial Implications

Our results have direct implications on how influence should be measured in a social broadcasting network, which is of great importance to managers who wish to harness the power of social broadcasting networks.

Influence

Simply counting the number of a user's followers is a coarse measurement of this user's influence. For a user, we should also take into account of:

- the tie strength between the user and his/her followers;
- the number of followers/followings of each of the user's follower;
- the overlapping index between the user and each of his/her followers.