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Introduction

Moral Hazard and Securitization: Empirical Evidence

v

Mian and Sufi (2009)

v

Downing, Jaffee, and Wallace (2009)
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Keys, Mukherjee, Seru, and Vig (2010)

v

President Barack Obama (July 21, 2010)
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Optimal Security Design: Theory

» Liquidy and Asymmetric Information
e Meyers and Majluf (1984), Gorton and Pennachi (1990), Boot and

Takor (1993), DeMarzo and Duffie (1999), Fulghieri and Lukin (2001),
DeMarzo (2005), Axelson (2007)

» Dynamic moral hazard

e Demarzo and Sannikov (2006), Cadenillas, Cvitani¢ and Zapatero
(2007), Sannikov (2008)

» Persistent Moral Hazard

e Hopenhayn and Jarque (2006), Hartman-Glaser, Piskorski, and Tchistyi
(2009)
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The Model

» te[0,00)

> intermediary S can create a pool of N defaultable bonds (mortgages,
loans, etc.)

» bonds pay a coupon w until default and a coupon R < u after default

» the initial unobservable costly effort e € {e1,--- ,ex} determines
default risk

> defaults times in the pool are i.i.d. with a density p.;(¢) conditional
on the effort e;

> investors observe Dy, the number of defaults before time ¢

T, = inf{t > 0: Dy >n}
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The optimal contracting problem I.

» We distinguish two polar cases:

e Competitive case: Intermediary designs the contract

e Monopolistic Case: Investor designs the contract

> e Conjecture 1. Securitization leads to lax screening if the securitizer
has all the bargaining power.

e Conjecture 2. The optimal screening effort when the securitizer has
all the bargaining power is lower than the optimal screening effort when
the investor has all the bargaining power.
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The optimal contracting problem II.

> a securitization contract specifies a transfer rates schedule
{wn(t, 7(1,n)), m > 0} from the investor to the intermediary
contingent on the history of defaults

US({xn}aej) =F / B_WtuS(th(th[l,Dt])) dt|6j:| - Cj
LJO

UB({an},ej) = F / eirtuB(dt - th<t7T[1,Dt})) dt‘€]:| :
0

> the risk sharing rule J(z;d) solves
up(d — w(J(z;d)) w'(J(z;d)) =
where w(z) = ug'(z).
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Default times are order statistics

» The joint density of (7q,---,7%), & < N conditional on the effort
level e; if given by
N!

f]jj (71, ,Tk) = 1y <cny (N — )!pej (11) - Pe; (k) (Gej (Tk))N_k

where
Ge,(x) = Prob[Ty > tle;].
» define

Pe,(T1) - Pe, (1) (Ge, ()M

b e () pe, () (G, ()N F

Preie; (611
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The optimal contract

There exist Lagrange multipliers pupc, pic > 0 such that such that the
optimal contract {z,(t) , n=0,---, N} is given by

xn(t’ T[l,n]) — 11- w J e(T—'Y)t UPC + Z HIC,iPTL,(ii,ej (t, ’T[Ln}) N dn
i#]

where

I = t> O:wl|J e(riv)t HPC + ZHIC,iPn7€i,6j (taT[l,k]) ; dn
i#]

If v > r then the contract has a finite maturity: There exists a T > 0 such

that @, (¢, 7p1,,)) = 0 for all ¢ > T and all n. > 0.
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Optimal Contract

Properties of the optimal contract

» if optimal level of effort e; implements the minimal default hazard
rate then x,, are decreasing with n

» if optimal level of effort e; does not implement the minimal default
hazard rate and the recovery rate R/u is not too small then z,,
increase in n for some values of (¢, 7 ,]);

» if the optimal level of effort is such that the individual default
likelihood ratio pe;(t)/pe; (t) is increasing (decreasing) in ¢ then
Ty (t, T1,n)) is increasing (decreasing) in 7y ;-
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Optimal Contract

Small Risk Aversion: Extreme Punishment for
defaults

Theorem Suppose that p., has the smallest hazard rate. Then, suppose
that both agents have exponential (CARA) preferences

us(r) = Agl(1—e45%) | up(z) = Azl —e 187).

Then, when Ap, Ag are sufficiently small and Ap/Ag is not too large,
xn = 0 for all n > 1. That is, the contract only makes payments until the
first default occurs.
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Regularity Assumption

Definition We will say the default time distributions are k-regular if the
function zo(t) can have at most & local maxima in ¢ € [0,R)
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Optimal Contract

The risk neutral limit when effort reduces hazard
rates

Theorem Suppose that default time distributions are k-regular, v > r and
we are implementing the lowest hazard rate. Then, in the risk neutral
limit, the optimal contract takes the following form:

» There exists a k € {0,--- ,k — 1} and time instants
0<ty<--- <ty <ooandy; € R4, ¢ =0,---,K such that the
optimal contract transfers a lump sum of y; at time ¢; if no defaults
occur until ¢;. That is, the transfer process is given by

K
E Liet, 1t<r Vi
i=0
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Optimal Contract

Exponential Densities

Proposition Suppose that p., (t) = A\;e At foralli=1,--- K and
A1 > -+ > Ag. Then, default time distributions are (K — 1)-regular and
therefore the convergence result holds with £k = K — 1.
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The Black and Cox (1976) default time distributions

| 4
dXt = Xt (,udt + O'dBt)

>

t —2ma t—

Prob[rX8 < t] = 1<I><m +a> +ef2r2 (I)(m a)

a\/i oVt

» density
a (mt+a)2
a,m,o t) = e 2921
e () V2o t3/2
>
m =pu—0502>0, a = log(Xe/Xp) > 0.

>

1 £ 2
d(r) = — eV /2q
(@) \/ﬁ/oo Y
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Black and Cox

Black and Cox default distributions: properties

The density p®"™7 i

(1) increasing in a,m and decreasing in o in the sense of <p, order;
(2) increasing in a in the sense of the <, order;

(3) decreasing in m with respect to the <, order

(4) neither increasing nor decreasing in o with respect to the <, order.

Malamud, Rui.and

Whinston Optimal Incentives and Securitization

19



Screening in the Black and Cox setting

Suppose that p., = plarmisok) for some ag, my, of > 0.

mia;g
L1 are
75

(1) Higher effort reduces default risk if and only if Z—; and

monotone increasing in j.

(2) if % > 7 for all i then x,, is decreasing with n. Furthermore,
J i
Ty (t, T1,n)) is increasing (decreasing) in 74,k =1,--- ,n when
T < Ming4; t; ; (1 > max;£; ti,j).

(3) if 2 < ™ for all i then zy, is decreasing with n < m when
J 3

Tm < Ming4; fi,j but is increasing in n > k when 7, > max;; fij.

Furthermore, x,(t, 71 ,)) is monotone increasing in 74,k = 1,--- ,n.
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Black and Cox

Paying at time zero is optimal

Proposition In the Black and Cox setting, the transfer rate

z0(t;T1,n)), t > 0 always attains a local maximum at ¢ = 0. In the binary
effort case, it has at most one positive local maximum. Thus, there exist
thresholds 0 < 0o(n, 7j1,5,)) < 01(n, 7T1,)) < 02(n, 7(1,5) Such that
Tn(t;7T1,,) > 0 if and only if

t € [mn,00(n, ) U (01(n, 1), O2(n, Tn)) -
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Optimal contract

Define

41(1) D) and 81(t)
1(t) = and t] = argmin ¢1(¢

L= (Gey (0/Gey ()N M1 26
The following is true:
Theorem Suppose that the effort is binary, default time distributions are
from the Black and Cox model, pe;, <p, pey and the desired effort level in
err. Then, in the risk neural limit, the optimal contract makes a lump sum
payment yg > 0 to the intermediary at time 0, and then a lump sum
payment y; > 0 at a time t* > 0 if no defaults occur before t = t*.
Furthermore, there exists a threshold C* such that, for Cg < C* we have

67tﬁ1‘ (CH — CL)
(Gepy (TN = (G, ()N

t*:tjlﬂ7y1:

and yo > 0.
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Black and Cox

Figure: convergence
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Optimal contract maturity

Proposition The maturity t* = ¢] of the optimal contract is always
monotone decreasing in N and v — r and is increasing in the size of
default risk under high effort. The payment y; is increasing in v — r, and
decreasing in N and the size of default risk under high effort.
Furthermore, t* converges to 0 as N — oo.
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Maturity as a function of ay

Optimal Contract

Maturity
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CIEGSENCNES @  Risk Neutral Limit in the Black and Cox setting

Payments as a function of ay
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Maturity as a function of y

Optimal Contract
Maturity
(in Months)
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Risk Neutral Limit in the Black and Cox setting
Payments as a function of pupy

Payment
Monopolistic: yo/Ug ——
Monopolistic: y/Ug -

Competitive:yy/Ug -------
Competitive: y,/Ug ----

0.5}

9% 5% 6% 7% 8% 9% 0% "

Malamud, Rui.and . . P
Whinston Optimal Incentives and Securitization

29



Maturity as a function of oy,

Optimal Contract
Maturity
(in Months)
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Payments as a function of o,

Payment
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Securitization and effort choice

Outside options

» In order to address the equilibrium effort choice, we need to specify
the outside options for the agents

» For the intermediary, we assume that the outside option is

Ug = mjax Us({d:}, e))

» For the investor, we assume that the outside option is zero
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The effect of risk aversion

Proposition Suppose that the intermediary has CARA preferences. Then,
in the absence of securitization, the optimal effort level maximizing
Us({dn},e;) is monotone decreasing in risk aversion and the discount rate

.
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Retaining a fraction of the pool

Proposition Suppose that the intermediary has CARA preferences. Then
the optimal effort level is monotone increasing in

a € [0,min{1, (AsNu)~'}] and is monotone decreasing in

a € [min{1, (AsNR)~'},1].
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Securitization and effort choice

First loss piece

Proposition Suppose that the number N of assets in the pool is
sufficiently large. Then, the optimal effort level is always monotone
increasing in L for small positive values of L, but is monotone decreasing
in L for large values of L < N.
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Securitization and effort choice

Effort choice and optimal
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Securitization and effort choice

0.08

Effort choice and the bargaining power
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

First best

» Assumption C; = N¢; , j = H, L for some cr,, cg > 0.
» first best surplus

FB;(N) = Up({dn};¢;) —Up — (Ug+Cj) = N - FBy(1)

is proportional to the number of assets in the pool.
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

Implementing low effort

In the risk neutral case, the optimal contract implementing low effort
consists in paying the intermediary a fixed lump sum at time zero and the
total surplus
> In the competitive case, this lump sum equals Ug({d,},er) — U%
(full surplus extraction by the intermediary).
» In the monopolistic case, the lump sum equals Ug + O, (full surplus
extraction by the investor).
In particular, total surplus coincides with FBy ..
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

Effort choice and menu

Proposition Suppose that the agents can only choose from a menu of
contracts. Then, increasing the set of allowed contracts always (weakly)
improves equilibrium effort level of the intermediary.
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

Second best surplus

Proposition The second best surplus SBy for high effort is independent
of bargaining power allocation and is given by

SBu(N) = N (FBu(1) - (ca —cr) ¢1(t)) -

The total surplus loss (FBg(N) — SBy(N))/N per asset is monotone
decreasing in the number N of assets and converges to zero as N — oo.
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

First best effort choice

> v > r implies

Up({dn},en) — Up({dn},er) > Us({dn},en) — Us({dn},eL).

» optimal effort level is high in the first best case if and only if

UB({dn},eH) — UB({dn},eL) > CH—CL. (1)
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SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

Second best effort choice

Proposition In the presence of securitization, equilibrium effort level is eg
if and only if

Us({dn},en) — Ug({dn}tier) = (14 ¢1(¢))(Cu — CL) .

Consequently,

» If (1) does not hold then the equilibrium effort level is ey, both with
and without securitization, independent of bargaining power
allocation.

» If (1) holds then there exists an N* > 1 such that the equilibrium
effort level is ey if and only if NV > N*. In particular, for sufficiently
large NN, securitization always improves equilibrium screening effort.

Malamud, Rui.and

Whinston Optimal Incentives and Securitization 45



SEET AP ETT R RS {feTg e OIS Securitization and effort choice: risk neutral limit

Securitization and the number of assets in the pool

Proposition Consider a 1-parameter family of distributions G(t, «), such
that G(¢, «) is continuous and increases in « in the hazard rate order.
Suppose that G, (t) = G(t,a;), j = H, L. Then, there exist thresholds
« < @ such that:

» without securitization, intermediary chooses high effort if and only if
ag > Q;

> in the first best case, investor chooses high effort of the intermediary
if and only if ag > a.

Then, for all ay € (a, @), there exists a threshold N*(ar) such that
equilibrium effort level is high if and only if N > N*(az). Consequently,
for all ag € (a,@) and N > N*(ap), securitization strictly improves
equilibrium screening effort.
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Figure: N* as a function of ay
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Securitization and effort choice

Figure: N* as a function of yy
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Securitization and effort choice

Thank You!
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