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Introduction

Moral Hazard and Securitization: Empirical Evidence

I Mian and Sufi (2009)

I Downing, Jaffee, and Wallace (2009)

I Keys, Mukherjee, Seru, and Vig (2010)

I President Barack Obama (July 21, 2010)
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Introduction

Optimal Security Design: Theory

I Liquidy and Asymmetric Information

• Meyers and Majluf (1984), Gorton and Pennachi (1990), Boot and
Takor (1993), DeMarzo and Duffie (1999), Fulghieri and Lukin (2001),
DeMarzo (2005), Axelson (2007)

I Dynamic moral hazard

• Demarzo and Sannikov (2006), Cadenillas, Cvitanić and Zapatero
(2007), Sannikov (2008)

I Persistent Moral Hazard

• Hopenhayn and Jarque (2006), Hartman-Glaser, Piskorski, and Tchistyi
(2009)
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Setup

The Model

I t ∈ [0,∞)

I intermediary S can create a pool of N defaultable bonds (mortgages,
loans, etc.)

I bonds pay a coupon u until default and a coupon R < u after default

I the initial unobservable costly effort e ∈ {e1, · · · , eK} determines
default risk

I defaults times in the pool are i.i.d. with a density pej (t) conditional
on the effort ej

I investors observe Dt, the number of defaults before time t

τn = inf{t > 0 : Dt ≥ n}
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Setup

The optimal contracting problem I.

I We distinguish two polar cases:

• Competitive case: Intermediary designs the contract

• Monopolistic Case: Investor designs the contract

I • Conjecture 1. Securitization leads to lax screening if the securitizer
has all the bargaining power.

• Conjecture 2. The optimal screening effort when the securitizer has
all the bargaining power is lower than the optimal screening effort when
the investor has all the bargaining power.
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Setup

The optimal contracting problem II.
I a securitization contract specifies a transfer rates schedule

{xn(t, τ[1,n]), n ≥ 0} from the investor to the intermediary
contingent on the history of defaults

I

US({xn}, ej) ≡ E

[∫ ∞

0
e−γ t uS(xDt(t, τ[1,Dt])) dt | ej

]
− Cj

I

UB({xn}, ej) ≡ E

[∫ ∞

0
e−r t uB(dt − xDt(t, τ[1,Dt])) dt | ej

]
.

I the risk sharing rule J(x; d) solves

u′B
(
d − w(J(x; d))

)
w′(J(x; d)) = x

where w(x) = u−1
S (x).
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Setup

Default times are order statistics

I The joint density of (τ1, · · · , τk), k ≤ N conditional on the effort
level ej if given by

f
ej
k (τ1, · · · , τk) = 1τ1<···<τk

N !

(N − k)!
pej (τ1) · · · pej (τk) (Gej (τk))

N−k

where
Gej (x) = Prob[T1 > t|ej ] .

I define

Pk,ei,ej (t; τ[1,k]) ≡ 1 − pei(τ1) · · · pei(τk)(Gei(t))
N−k

pej (τ1) · · · pej (τk)(Gej (t))
N−k

,
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Optimal Contract

The optimal contract

There exist Lagrange multipliers µPC, µIC ≥ 0 such that such that the
optimal contract {xn(t) , n = 0, · · · , N} is given by

xn(t, τ[1,n]) = 1I w

J

e(r−γ)t

µPC +
∑
i6=j

µIC,iPn,ei,ej (t, τ[1,n])

 ; dn

 .

where

I =

t ≥ 0 : w

J

e(r−γ)t

µPC +
∑
i6=j

µIC,iPn,ei,ej (t, τ[1,k])

 ; dn

 ≥ 0

 .

If γ > r then the contract has a finite maturity: There exists a T̄ > 0 such
that xn(t, τ[1,n]) = 0 for all t ≥ T̄ and all n ≥ 0.
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Optimal Contract

Properties of the optimal contract

I if optimal level of effort ej implements the minimal default hazard
rate then xn are decreasing with n

I if optimal level of effort ej does not implement the minimal default
hazard rate and the recovery rate R/u is not too small then xn
increase in n for some values of (t, τ[1,n]);

I if the optimal level of effort is such that the individual default
likelihood ratio pej (t)/pei(t) is increasing (decreasing) in t then
xn(t, τ[1,n]) is increasing (decreasing) in τ[1,n] .
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Optimal Contract

Small Risk Aversion: Extreme Punishment for
defaults

Theorem Suppose that pej has the smallest hazard rate. Then, suppose
that both agents have exponential (CARA) preferences

uS(x) = A−1
S (1− e−ASx) , uB(x) = A−1

B (1− e−ABx) .

Then, when AB, AS are sufficiently small and AB/AS is not too large,
xn ≡ 0 for all n ≥ 1. That is, the contract only makes payments until the
first default occurs.
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Optimal Contract

Regularity Assumption

Definition We will say the default time distributions are k-regular if the
function x0(t) can have at most k local maxima in t ∈ [0,R+)
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Optimal Contract

The risk neutral limit when effort reduces hazard
rates

Theorem Suppose that default time distributions are k-regular, γ > r and
we are implementing the lowest hazard rate. Then, in the risk neutral
limit, the optimal contract takes the following form:

I There exists a κ ∈ {0, · · · , k − 1} and time instants
0 ≤ t0 < · · · < tκ < ∞ and yi ∈ R+, i = 0, · · · , κ such that the
optimal contract transfers a lump sum of yi at time ti if no defaults
occur until ti. That is, the transfer process is given by

κ∑
i=0

1t=ti 1ti<τ1 yi .
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Optimal Contract

Exponential Densities

Proposition Suppose that pei(t) = λi e
−λi t for all i = 1, · · · ,K and

λ1 > · · · > λK . Then, default time distributions are (K − 1)-regular and
therefore the convergence result holds with k = K − 1.
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Black and Cox

The Black and Cox (1976) default time distributions

I

dXt = Xt (µdt + σ dBt)

I

Prob[τXB < t] ≡ 1 − Φ

(
mt+ a

σ
√
t

)
+ e

−2ma

σ2 Φ

(
mt− a

σ
√
t

)
I density

pa,m,σ(t) =
a√

2π σ t3/2
e−

(mt+a)2

2σ2t

I

m = µ− 0.5σ2 > 0 , a = log(X0/XB) > 0 .

I

Φ(x) ≡ 1√
2π

∫ x

−∞
e−y2/2dy
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Black and Cox

Black and Cox default distributions: properties

The density pa,m,σ is

(1) increasing in a,m and decreasing in σ in the sense of ≺hr order;

(2) increasing in a in the sense of the ≺lr order;

(3) decreasing in m with respect to the ≺lr order

(4) neither increasing nor decreasing in σ with respect to the ≺lr order.
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Black and Cox

Screening in the Black and Cox setting

Suppose that pek = p(ak,mk,σk) for some ak,mk, σk > 0.

(1) Higher effort reduces default risk if and only if
aj
σj

and
mjaj
σ2
j

are

monotone increasing in j.

(2) if
mj

σj
≥ mi

σi
for all i then xn is decreasing with n. Furthermore,

xn(t, τ[1,n]) is increasing (decreasing) in τk, k = 1, · · · , n when
τk < mini 6=j t̄i,j (τk > maxi6=j t̄i,j).

(3) if
mj

σj
≤ mi

σi
for all i then xn is decreasing with n ≤ m when

τm ≤ mini 6=j t̂i,j but is increasing in n ≥ k when τk ≥ maxi 6=j t̂ij .
Furthermore, xn(t, τ[1,n]) is monotone increasing in τk, k = 1, · · · , n.
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Black and Cox

Paying at time zero is optimal

Proposition In the Black and Cox setting, the transfer rate
x0(t; τ[1,n]), t ≥ 0 always attains a local maximum at t = 0. In the binary
effort case, it has at most one positive local maximum. Thus, there exist
thresholds 0 ≤ θ0(n, τ[1,n]) ≤ θ1(n, τ[1,n]) < θ2(n, τ[1,n]) such that
xn(t; τ[1,n]) > 0 if and only if

t ∈ [τn, θ0(n, τ[1,n])) ∪ (θ1(n, τ[1,n]) , θ2(n, τ[1,n])) .
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Optimal contract

Define

φ1(t) ≡ (e(γ−r)t − 1)

1− (GeL(t)/GeH (t))
N

and t∗1 ≡ argmin
t≥0

φ1(t)

The following is true:
Theorem Suppose that the effort is binary, default time distributions are
from the Black and Cox model, peL ≺hr peH and the desired effort level in
eH . Then, in the risk neural limit, the optimal contract makes a lump sum
payment y0 ≥ 0 to the intermediary at time 0, and then a lump sum
payment y1 > 0 at a time t∗ > 0 if no defaults occur before t = t∗.
Furthermore, there exists a threshold C∗ such that, for CH < C∗ we have

t∗ = t∗1 , y1 =
eγt

∗
1 (CH − CL)

(GeH (t
∗
1))

N − (GeL(t
∗
1))

N
,

and y0 > 0.

Malamud, Rui and
Whinston Optimal Incentives and Securitization 23



Black and Cox Risk Neutral Limit in the Black and Cox setting

Figure: convergence
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Optimal contract maturity

Proposition The maturity t∗ = t∗1 of the optimal contract is always
monotone decreasing in N and γ − r and is increasing in the size of
default risk under high effort. The payment y1 is increasing in γ − r, and
decreasing in N and the size of default risk under high effort.
Furthermore, t∗ converges to 0 as N → ∞.
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Black and Cox Risk Neutral Limit in the Black and Cox setting
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Payments as a function of aH
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Maturity as a function of µH
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Payments as a function of µH
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Maturity as a function of σL
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Black and Cox Risk Neutral Limit in the Black and Cox setting

Payments as a function of σL
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Securitization and effort choice

Outside options

I In order to address the equilibrium effort choice, we need to specify
the outside options for the agents

I For the intermediary, we assume that the outside option is

U0
S = max

j
US({dt}, ej)

I For the investor, we assume that the outside option is zero
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Securitization and effort choice

The effect of risk aversion

Proposition Suppose that the intermediary has CARA preferences. Then,
in the absence of securitization, the optimal effort level maximizing
US({dn}, ej) is monotone decreasing in risk aversion and the discount rate
γ.
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Securitization and effort choice

Retaining a fraction of the pool

Proposition Suppose that the intermediary has CARA preferences. Then
the optimal effort level is monotone increasing in
α ∈ [0,min{1, (ASNu)−1}] and is monotone decreasing in
α ∈ [min{1, (ASNR)−1}, 1].
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Securitization and effort choice

First loss piece

Proposition Suppose that the number N of assets in the pool is
sufficiently large. Then, the optimal effort level is always monotone
increasing in L for small positive values of L, but is monotone decreasing
in L for large values of L < N.
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Securitization and effort choice

Effort choice and optimal securitization
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Securitization and effort choice

Effort choice and the bargaining power
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Securitization and effort choice Securitization and effort choice: risk neutral limit
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Securitization and effort choice Securitization and effort choice: risk neutral limit

First best

I Assumption Cj = N cj , j = H,L for some cL, cH > 0.

I first best surplus

FBj(N) = UB({dn}; ej)− U0
B − (U0

S + Cj) = N · FBj(1)

is proportional to the number of assets in the pool.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Implementing low effort

In the risk neutral case, the optimal contract implementing low effort
consists in paying the intermediary a fixed lump sum at time zero and the
total surplus

I In the competitive case, this lump sum equals UB({dn}, eL)− U0
B

(full surplus extraction by the intermediary).

I In the monopolistic case, the lump sum equals U0
S + CL (full surplus

extraction by the investor).

In particular, total surplus coincides with FBL.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Effort choice and menu

Proposition Suppose that the agents can only choose from a menu of
contracts. Then, increasing the set of allowed contracts always (weakly)
improves equilibrium effort level of the intermediary.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Second best surplus

Proposition The second best surplus SBH for high effort is independent
of bargaining power allocation and is given by

SBH(N) = N (FBH(1)− (cH − cL)φ1(t
∗
1)) .

The total surplus loss (FBH(N)− SBH(N))/N per asset is monotone
decreasing in the number N of assets and converges to zero as N → ∞.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

First best effort choice

I γ > r implies

UB({dn}, eH) − UB({dn}, eL) > US({dn}, eH) − US({dn}, eL) .

I optimal effort level is high in the first best case if and only if

UB({dn}, eH) − UB({dn}, eL) > CH − CL . (1)
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Second best effort choice

Proposition In the presence of securitization, equilibrium effort level is eH
if and only if

UB({dn}, eH) − UB({dn}, eL) ≥ (1 + φ1(t
∗
1))(CH − CL) .

Consequently,

I If (1) does not hold then the equilibrium effort level is eL, both with
and without securitization, independent of bargaining power
allocation.

I If (1) holds then there exists an N∗ ≥ 1 such that the equilibrium
effort level is eH if and only if N ≥ N∗. In particular, for sufficiently
large N, securitization always improves equilibrium screening effort.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Securitization and the number of assets in the pool

Proposition Consider a 1-parameter family of distributions G(t, α), such
that G(t, α) is continuous and increases in α in the hazard rate order.
Suppose that Gej (t) = G(t, αj), j = H,L. Then, there exist thresholds
α < α such that:

I without securitization, intermediary chooses high effort if and only if
αH > ᾱ;

I in the first best case, investor chooses high effort of the intermediary
if and only if αH > α.

Then, for all αH ∈ (α, α), there exists a threshold N∗(αH) such that
equilibrium effort level is high if and only if N > N∗(aH). Consequently,
for all αH ∈ (α, α) and N > N∗(αH), securitization strictly improves
equilibrium screening effort.
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Figure: N ∗ as a function of aH
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Figure: N ∗ as a function of µH
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Securitization and effort choice Securitization and effort choice: risk neutral limit

Thank You!
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