

Optimal Auction Design for WiFi Procurement

Huaxia Rui

Simon Business School, The University of Rochester

Joint work with Liangfei Qiu and Andrew Whinston

Agenda

1 Introduction

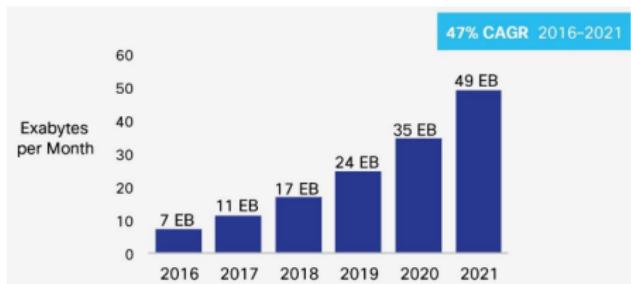
2 Model Setup

3 Global Auction

4 Glocal Auction

5 Conclusions

Mobile Data Tsunami



Challenge and Solutions

Challenge: Overloaded cellular networks, not enough bandwidth

Solutions

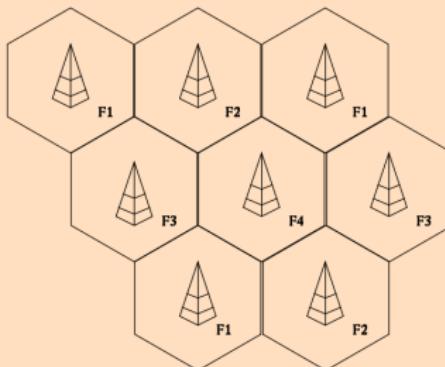
- **Spectrum:** acquire more spectrum — *more lanes?*
- **Infrastructure:** increase the number of cell towers — *interchange?*
- **Technology:** upgrade the network technology — *smaller car or driveless car?*
- **Mobile data offloading:** use of alternative network technologies for delivery of data *originally* targeted for cellular networks. — *road + subway ?*

Mobile Data Offloading

- Range of a typical WiFi network: 120 ft to 300 ft
- Range of a typical cell tower: 1 – 2 miles

An Old Idea

Mobile phone service had existed since the 1940s, but a small number of channels (e.g., 12 in NYC) were shared by customers.



Homespots

Comcast's XFINITY and Cablevision's Optimum services have turned millions of home gateways into quasi-public hotspots.

Cablevision's Freewheel, includes unlimited data, talk and text for \$9.95 a month for the company's broadband Internet subscribers and \$29.95 for noncustomers.

Third-party WiFi Hotspots

- Build your own hotspots
- Homespots
- Buy WiFi capacity from **third-party** hotspots.

Dong et al. (2014) and Iosifidis et al. (2013) proposed using auction for mobile data offloading.

Research Question

Why auction?

- Products with standardized characteristics
- The number of WiFi hotspots is large.

Research Question

What is the **optimal** auction mechanism for a cellular service provider to procure WiFi capacity from third-party WiFi hotspots ?

Challenge

A cellular tower can serve traffic in any region within its range (i.e., the cell sector), whereas WiFi hotspots can only serve local traffic.

Naive Solutions

- **Local** auction: organize auctions based on WiFi region.
 - **multiple** auctions, one for each region.
 - **Disadvantage**: competition among hotspots will be reduced.
- **Global** auction: organize auction based on cellular sector.
 - **one** auction, with participation from hotspots from all regions.
 - **Disadvantage**: auction results may not be implementable.

Our contribution

We propose **Glocal** auction, an optimal procurement mechanism that integrates local auctions and global auction.

Agenda

1 Introduction

2 Model Setup

3 Global Auction

4 Glocal Auction

5 Conclusions

Cellular Service Provider

- A cellular network provides service to its customers who demand bandwidth.
- We think of the packets requested by the consumers as being serviced in a queuing system.
- μ : the service capacity of the provider.
- λ : the demand arrival rate.

Customers

Expected Waiting Time

- $W(\mu)$: the expected waiting time a typical customer experiences.
- $W(\mu)$ should be decreasing in μ and be bounded below.

Assumption 1

$$\frac{dW}{d\mu} < 0, \quad \frac{d^2W}{d\mu^2} > 0.$$

- Assumption 1 is satisfied for an $M/M/c$ queue.
- In Cheng et al. (2011), $W(\mu) = \frac{1}{\mu - \lambda}$.

Congestion Cost

$\chi(W)$: the **indirect** cost borne by the **cellular service provider** due to customer waiting.

Assumption 2

$\chi(W)$ is strictly increasing and convex.

$$\frac{d\chi}{dW} > 0, \quad \frac{d^2\chi}{dW^2} \geq 0.$$

- Cachon and Feldman (2011) assumed a linear structure.
- Define $\omega(\mu) \equiv \chi(W(\mu))$
- $\omega(\mu)$ is strictly decreasing and strictly convex in μ .

WiFi Hotspots

The cost of providing a capacity of Q for WiFi hotspot i is

$$C(Q, \theta_i) = \int_0^Q c(q, \theta_i) dq$$

where θ_i is hotspot i 's private information about its cost structure.

Assumption 3: Hotspot Cost Structure

- $c_q \geq 0$, $c_\theta \geq 0$, $c_{\theta\theta} \geq 0$, and $c_{q\theta} \geq 0$.
- θ_i : independently and identically distributed with a distribution function $F(\cdot)$ defined on $[\underline{\theta}, \bar{\theta}]$.
- $H(\theta) \equiv F(\theta)/F'(\theta)$ is increasing in θ .

- For any payment a hotspot receives for offloading mobile traffic, a proportion $(1 - \tilde{\alpha} \in (0, 1))$ of it goes to the hotspot's ISP.
- Define $\alpha = \tilde{\alpha}^{-1}$.

WiFi Regions

- Literature suggests partitioning the service area of a cell tower (i.e., the cell sector) into several WiFi regions (e.g., Dong et al. 2014).
- Cellular capacity can serve traffic in any region, but WiFi hotspots in a region can only serve local traffic.

- M : number of WiFi regions in the cell sector.
- y_m : the total amount of WiFi capacity procured in region m .
- N : the total number of hotspots, in all regions.
- E_m : the set of hotspots in region m .
- $\omega_m(\cdot)$: region-specific congestion cost function.

WiFi Regions

The Goal

- Purchases WiFi capacity (y_1, \dots, y_M) for the M regions from hotspots in these regions to supplement its cellular capacity.
- Minimize the total cost, including the total **congestion cost** $J(y_1, \dots, y_M)$ and the **procurement cost**.

Total Congestion Cost

$$\begin{aligned} J(y_1, \dots, y_M) &= \text{Min}_{\mu_1, \dots, \mu_M} \sum_{m=1}^M \omega_m (\mu_m + y_m) \\ \text{s.t.} \quad & \sum_{m=1}^M \mu_m \leq \mu, \mu_m \geq 0, \text{ for } m = 1, 2, \dots, M, \end{aligned}$$

Agenda

1 Introduction

2 Model Setup

3 Global Auction

4 Glocal Auction

5 Conclusions

Understanding Global Auction

Equivalent to relaxing the non-negativity constraints of μ_m

$$\begin{aligned} J(y_1, \dots, y_M) &= \text{Min}_{\mu_1, \dots, \mu_M} \sum_{m=1}^M \omega_m (\mu_m + y_m) \\ \text{s.t.} \quad & \sum_{m=1}^M \mu_m \leq \mu, \mu_m \geq 0, \text{ for } m = 1, 2, \dots, M \end{aligned}$$

Definitions

- $y = \sum_{m=1}^M y_m$
- $\phi(\cdot)$ is the inverse of $\omega'(\cdot)$: $\phi(\omega'(x)) = x$
- $\Phi(\cdot) \equiv \sum_{m=1}^M \phi_m(\cdot)$
- $\Psi(\cdot)$ is the inverse of $\Phi(\cdot)$: $\Psi(\Phi(x)) = x$

Proposition 1

Optimal Cellular Resource Allocation

Under global auction, the optimal cellular resource allocation is given by

$$\mu_m^* = \phi_m(\Psi(y + \mu)) - y_m$$

The minimized congestion cost is

$$J(y) \equiv \sum_{m=1}^M \omega_m \left(\phi_m(\Psi(y + \mu)) \right).$$

Moreover, $J(y)$ is decreasing and convex.

The Overall Procedure

- The cellular service provider announces a payment-bandwidth schedule $P_i = P(\theta_i, \theta_{-i})$, and a quantity schedule $q_i = Q(\theta_i, \theta_{-i})$;
- Hotspot i truthfully reports the private cost parameter θ_i given $P(\theta_i, \theta_{-i})$ and $Q(\theta_i, \theta_{-i})$;
- Hotspot provides the WiFi capacity and receives the payment.
- Each WiFi region will be served by the procured WiFi capacity in the region and the cellular capacity of μ_m^* .

We still need to design the mechanism.

Payment Schedule

Expected Profit of Reporting θ' for a Hotspot with θ

$$\pi(\theta', \theta) \equiv \mathbb{E}_{-i} [\tilde{\alpha} P(\theta', \theta_{-i}) - C(Q(\theta', \theta_{-i}), \theta)], \quad \pi(\theta) \equiv \pi(\theta, \theta)$$

Necessary Condition for Incentive Compatibility (IC)

$$\begin{aligned} \pi(\theta, \theta) - \pi(\theta, \theta') &\geq \pi(\theta, \theta) - \pi(\theta', \theta') \geq \pi(\theta', \theta) - \pi(\theta', \theta') \\ &\Rightarrow \mathbb{E}_{-i} [C(Q(\theta, \theta_{-i}), \theta') - C(Q(\theta, \theta_{-i}), \theta)] \\ &\geq \pi(\theta, \theta) - \pi(\theta', \theta') \\ &\geq \mathbb{E}_{-i} [C(Q(\theta', \theta_{-i}), \theta') - C(Q(\theta', \theta_{-i}), \theta)]. \end{aligned}$$

$$\begin{aligned} \text{Send } \theta' \rightarrow \theta \Rightarrow \frac{d\pi(\theta)}{d\theta} &= -\mathbb{E}_{-i} [C_\theta(Q(\theta, \theta_{-i}), \theta)] \\ \Rightarrow \pi(\theta_i) &= \mathbb{E}_{-i} \left[\int_{\theta_i}^{\theta^*} C_\theta(Q(\theta, \theta_{-i}), \theta) d\theta \right]. \end{aligned}$$

Quantity Schedule

Given $\pi(\theta)$, the condition for IC is

$$\mathbb{E}_{-i} \left[C(Q_i(x, \theta_{-i}), x) + \int_x^{\theta^*} C_\theta(Q_i(\theta, \theta_{-i}), \theta) d\theta - C(Q_i(x, \theta_{-i}), \theta_i) \right] \\ = \pi(x, \theta_i) \leq \pi(\theta_i, \theta_i) = \mathbb{E}_{-i} \left[\int_{\theta_i}^{\theta^*} C_\theta(Q_i(\theta, \theta_{-i}), \theta) d\theta \right],$$

or equivalently

$$\mathbb{E}_{-i} \left[\int_{\theta_i}^x C_\theta(Q_i(x, \theta_{-i}), \theta) d\theta + \int_x^{\theta^*} C_\theta(Q_i(\theta, \theta_{-i}), \theta) d\theta \right] \\ \leq \mathbb{E}_{-i} \left[\int_{\theta_i}^x C_\theta(Q_i(\theta, \theta_{-i}), \theta) d\theta + \int_x^{\theta^*} C_\theta(Q_i(\theta, \theta_{-i}), \theta) d\theta \right]$$

One sufficient condition for IC: $Q_i(\theta, \theta_{-i})$ is **decreasing** in θ .

Proposition 2

Optimal Global Auction

The quantity schedule $q_i^* = Q^*(\theta_i, \theta_{-i})$ is determined by

$$-\Psi\left(\mu + \sum_{j=1}^N q_j^*\right) = \alpha c(q_i^*, \theta_i) + \alpha c_\theta(q_i^*, \theta_i) H(\theta_i), \forall i = 1, 2, \dots, N$$

The payment schedule $P_i = P^*(\theta_i, \theta_{-i})$ is given by:

$$P_i = \alpha \left(C(q_i^*, \theta_i) + \int_{\theta_i}^{\theta^*} C_\theta(Q^*(\theta, \theta_{-i}), \theta) d\theta \right), \forall i = 1, 2, \dots, N$$

The cellular service provider's expected gain:

$$J(0) - \mathbb{E} \left[J \left(\sum_{i=1}^N q_i^* \right) + \alpha \sum_{i=1}^N C(q_i^*, \theta_i) + \alpha \sum_{i=1}^N C_\theta(q_i^*, \theta_i) H(\theta_i) \right].$$

A Closer Look at the Quantity Schedule

q_i^* is decreasing in θ_i !

$$-\Psi\left(\mu + \sum_{j=1}^N q_j^*\right) = \alpha c(q_i^*, \theta_i) + \alpha c_\theta(q_i^*, \theta_i) H(\theta_i), \forall i = 1, 2, \dots, N$$

Recall that $\Psi(q)$ is the inverse of $\Phi(\cdot) \equiv \sum_{m=1}^M \phi_m(\cdot)$ where $\phi_m(\cdot)$ is the inverse of $\omega'_m(\cdot)$.

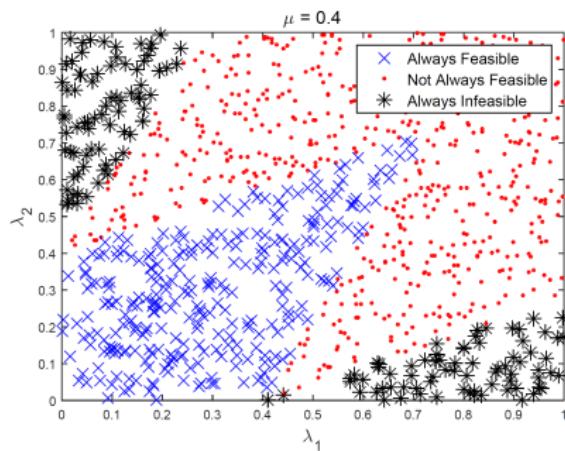
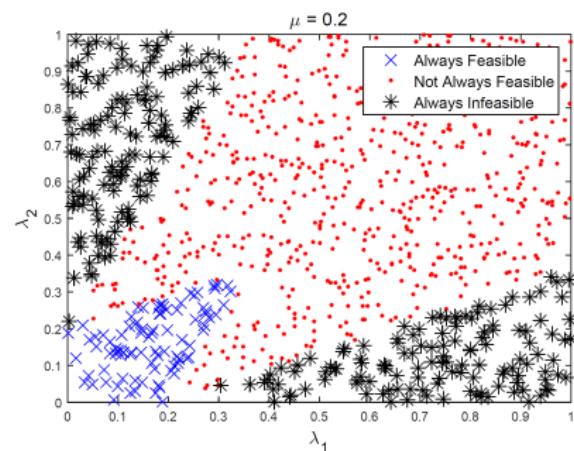
- $-\Psi(q)$: the marginal value of WiFi capacity when the total acquired WiFi capacity is q .
- The *virtual* marginal costs must all be equal to the marginal value of WiFi capacity.

Global Auction is Suboptimal!

We hoped that $\mu_m^* \geq 0$, or equivalently,

$$\mu \geq \Phi(\omega'_m(y_m)) - y, \quad \forall m = 1, \dots, M,$$

which we call the *feasibility condition*.



Agenda

1 Introduction

2 Model Setup

3 Global Auction

4 Glocal Auction

5 Conclusions

A Way Out

- Given (y_1, \dots, y_M) , let $\hat{\mu}_m$ be the optimal amount of cellular capacity allocated to region m **ignoring** all the non-negativity constraint on μ_i (i.e., in the global auction)
- We already know $\hat{\mu}_m = \phi_m(\Psi(y + \mu)) - y_m$.

Intuition

- The optimal auction should be designed so that μ_m coincides with $\hat{\mu}_m$ whenever possible;
- Whenever $\hat{\mu}_m < 0$ under some realizations of $(\theta_1, \dots, \theta_N)$, the optimal auction should adjust the quantity schedule to account for the corner solution in the second-stage optimization problem.

The Optimal Auction Design Problem

$$\begin{aligned} \max_{\substack{q_i, i=1, \dots, N \\ \mu_m, m=1, \dots, M}} \Pi &= \mathbb{E} \left[\sum_{m=1}^M -\omega_m (\mu_m + y_m) - \alpha \sum_{i=1}^N C(q_i, \theta_i) \right. \\ &\quad \left. - \alpha \sum_{i=1}^N C_\theta(q_i, \theta_i) H(\theta_i) \right], \\ \text{s.t.} \quad & \sum_{m=1}^M \mu_m \leq \mu, \\ & \mu_m \geq 0, \forall m = 1, 2, \dots, M, \\ & y_m = \sum_{i \in E_m} q_i, \forall m = 1, 2, \dots, M, \end{aligned}$$

Optimality

- The variational calculus problem is degenerated and we can solve the problem through pointwise optimization over the space of Θ .
- When $M = 2$, we can divide the space of Θ into two areas,

$$\Theta_1 \equiv \{(\theta_1, \theta_2, \dots, \theta_N) \mid \mu_1^* > 0, \mu_2^* > 0\},$$

$$\Theta_2 \equiv \{(\theta_1, \theta_2, \dots, \theta_N) \mid \mu_1^* = 0 \text{ or } \mu_2^* = 0\}.$$

- If $\vec{\theta} \in \Theta_1$, the nonnegativity conditions of μ_m are not binding. We are back to global auction!
- If $\vec{\theta} \in \Theta_2$, then one of the nonnegativity constraint must be binding at the optimal. The coupling across region disappears and we are back to local auctions!

Proposition 3

Optimal Mechanism when $M = 2$

The quantity schedule $q_i^{**} = Q_i^{**}(\theta_i, \theta_{-i})$ is determined by

$$-\Psi\left(\mu + \sum_{j=1}^N q_j^{**}\right) = \alpha c(q_i^{**}, \theta_i) + \alpha c_\theta(q_i^{**}, \theta_i) H(\theta_i), \forall i = 1, \dots, N$$

if $\hat{\mu}_1 \geq 0$ and $\hat{\mu}_2 \geq 0$, and is otherwise determined by

$$-\omega'_m\left(\mu \mathbf{1}_{\hat{\mu}_m > 0} + \sum_{j \in E_m} q_j^{**}\right) = \alpha c(q_i^{**}, \theta_i) + \alpha c_\theta(q_i^{**}, \theta_i) H(\theta_i), \forall i \in E_m$$

The optimal payment schedule $P_i^{**}(\theta_i, \theta_{-i})$, for $i = 1, 2, \dots, n$, is given by:

$$P_i^{**}(\theta_i, \theta_{-i}) = \alpha \left(C(q_i^{**}, \theta_i) + \int_{\theta_i}^{\theta^*} C_\theta(Q_i^{**}(\theta, \theta_{-i}), \theta) d\theta \right).$$

Incentive Compatibility

The key to incentive compatibility is for $q_i^{**}(\theta_i)$ to be non-increasing.

Local Monotonicity

- The optimal quantity schedule is a non-smooth function of $(\theta_1, \dots, \theta_N)$.
- We already know, that within each segment, the optimal quantity schedule is decreasing in each θ_i .

Global Monotonicity?

- Is the optimal quantity schedule decreasing across segments?
- Will hotspots have incentive to lie to trigger a switch from global auction to local auctions or vice versa?

Incentive Compatibility

Continuity

- $q_i^{**}(\theta_i)$ is continuous everywhere.
- Continuity upgrades local monotonicity to global monotonicity.

- Whenever the feasibility condition is satisfied, the mechanism is equivalent to the global auction.
- Whenever the feasibility condition is violated, the mechanism is equivalent to allocating all cellular capacity to one region and to organize one *local* auction in each region.

A Necessary Clarification

There is only ONE actual auction!

- The choice between a global auction and two local auctions is **endogenously** determined by the auctioneer based on the realization of $(\theta_1, \dots, \theta_N)$.
- From the perspective of a hotspot, ex ante, it does not know whether it will participate in a global auction or a local auction. It does not need to know.
- What matters to a hotspot is only the payment and quantity schedule announced by the auctioneer.

What happens with $M > 2$? (Skip if out of time)

- The same idea of integrating local and global auction.
- The additional task is to optimally divide the set of regions into two subsets: one where a global auction will be held (R_g) and the other where local auctions will be held (R_l).

But the number of ways to divide the set of WiFi regions is

$$\frac{\left|2^{\{1,2,\dots,M\}}\right|}{2} = \frac{2^M}{2} = 2^{M-1}$$

Proposition 4

Finding the largest feasible R_g

- Given $M \geq 2$ and $(\theta_1, \dots, \theta_N)$, and suppose there are two different schemes of dividing the regions into global and local auctions.
- Both schemes lead to feasible allocation of cellular capacity: (R_g, R_l) and $(\tilde{R}_g, \tilde{R}_l)$ where $\tilde{R}_g \subsetneq R_g$.
- The optimal gain corresponding to the auction design with (R_g, R_l) is larger than the optimal gain corresponding to the auction design with $(\tilde{R}_g, \tilde{R}_l)$.

From Combinatorial to Sequential

Intuition

- Given Proposition 4, we clearly should start with $R_g = \{1, \dots, M\}$.
- If this leads to infeasible allocation of cellular capacity, we have to shrink R_g .
- We probably should exclude those regions with $\mu_m^* < 0$ from R_g to restore feasibility.

The main concern with the sequential procedure is whether “exclusion” should be irreversible.

From Combinatorial to Sequential

Fortunately, the answer is **yes**.

- We can show that if a region is in R_l at some stage, then it will be in R_l in later stages had it remained in R_g .
- This guarantees the complexity is of the order of M .

Defining the k -subproblem

- Let $q_{i,k}$ be determined by the following equation:

$$-\Psi(Y_k) = \alpha c(q_{i,k}, \theta_i) + \alpha c_\theta(q_{i,k}, \theta_i) H(\theta_i), \forall i \in \bigcup_{m \in R_g^k} E_m.$$

- $Y_k \equiv \sum_{m \in R_g^k} y_{m,k}$, $y_{m,k} = \sum_{i \in E_m} q_{i,k}$
- Let $\mu_{m,k}^* = \phi_m(\Psi(Y_k + \mu)) - y_{m,k}$
- Let $R_+^k \equiv \{m \in R_g^k | \mu_{m,k} \geq 0\}$, $R_-^k \equiv \{m \in R_g^k | \mu_{m,k} < 0\}$.

Proposition 5

Optimal Mechanism when $M \geq 2$

Given $M \geq 2$ and $(\theta_1, \dots, \theta_N)$, the optimal quantity schedule q_i^{**} is given by

$$-\Psi\left(\mu + \sum_{j \in E_m, m \in R_g} q_j^{**}\right) = \alpha c(q_i^{**}, \theta_i) + \alpha c_\theta(q_i^{**}, \theta_i) H(\theta_i),$$
$$\forall i \in E_m, m \in R_g;$$

$$-\omega'_m\left(\sum_{j \in E_m} q_j^{**}\right) = \alpha c(q_i^{**}, \theta_i) + \alpha c_\theta(q_i^{**}, \theta_i) H(\theta_i)$$
$$\forall i \in E_m, m \in R_l$$

Proposition 5 (continued)

Optimal Mechanism when $M \geq 2$

R_g and R_l is constructed through the following iterative procedure:

- (0): Let $k = M$, $R_g^M = \{1, 2, \dots, M\}$, and $R_l^M = \emptyset$.
- (1): If $R_-^k = \emptyset$, let $R_g = R_g^k$ and $R_l = R_l^k$. Stop the procedure.
- (2): If $R_-^k \neq \emptyset$, let $R_g^{k-1} = R_g^k$ and $R_l^{k-1} = R_l^k \cup R_-^k$. Decrease k by 1 and repeat (1).

The optimal payment schedule P_i^{**} , for $i = 1, 2, \dots, n$ is given by:

$$P_i^{**} = \alpha \left(C(q_i^{**}, \theta_i) + \int_{\theta_i}^{\theta^*} C_\theta(q_i^{**}, \theta) d\theta \right).$$

Agenda

1 Introduction

2 Model Setup

3 Global Auction

4 Glocal Auction

5 Conclusions

Contributions

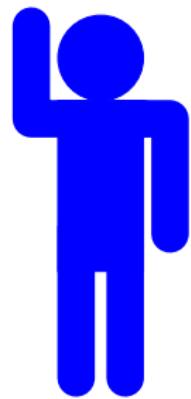
- Introduced a procurement auction framework for mobile data offloading.
- Solved the optimal auction design problem in a very general setting.
- Theoretical insights on the integration of global auction and local auction may apply to other auction design problems.

Limitations

- We only considered one cellular service provider.
- We assumed the marginal cost function of all hotspots can be approximated using a one-parameter function family.
- We focused on the supply side by abstracting away the consumer side.

Thank you!

Question



Question

Question

Question

